cs231n:assignment1:Q1k-Nearest Neighbor classifier

k-Nearest Neighbor (kNN) exercise

Complete and hand in this completed worksheet (including its outputs and any supporting code outside of the worksheet) with your assignment submission. For more details see the assignments page on the course website.

The kNN classifier consists of two stages:

  • During training, the classifier takes the training data and simply remembers it
  • During testing, kNN classifies every test image by comparing to all training images and transfering the labels of the k most similar training examples
  • The value of k is cross-validated

In this exercise you will implement these steps and understand the basic Image Classification pipeline, cross-validation, and gain proficiency in writing efficient, vectorized code.

# Run some setup code for this notebook.

import random
import numpy as np
from cs231n.data_utils import load_CIFAR10
import matplotlib.pyplot as plt
import os
print os.getcwd()

# This is a bit of magic to make matplotlib figures appear inline in the notebook
# rather than in a new window.
%matplotlib inline
plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

# Some more magic so that the notebook will reload external python modules;
# see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython
%load_ext autoreload
%autoreload 2
# Load the raw CIFAR-10 data.
cifar10_dir = 'cs231n/datasets/cifar-10-batches-py'
X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)

# As a sanity check, we print out the size of the training and test data.
print 'Training data shape: ', X_train.shape
print 'Training labels shape: ', y_train.shape
print 'Test data shape: ', X_test.shape
print 'Test labels shape: ', y_test.shape
Training data shape:  (50000, 32, 32, 3)
Training labels shape:  (50000,)
Test data shape:  (10000, 32, 32, 3)
Test labels shape:  (10000,)
# Visualize some examples from the dataset.
# We show a few examples of training images from each class.
classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
num_classes = len(classes)
samples_per_class = 7
for y, cls in enumerate(classes):
    idxs = np.flatnonzero(y_train == y)
    idxs = np.random.choice(idxs, samples_per_class, replace=False)
    for i, idx in enumerate(idxs):
        plt_idx = i * num_classes + y + 1
        plt.subplot(samples_per_class, num_classes, plt_idx)
        plt.imshow(X_train[idx].astype('uint8'))
        plt.axis('off')
        if i == 0:
            plt.title(cls)
plt.show()
out 3.png
# Subsample the data for more efficient code execution in this exercise
num_training = 5000
mask = range(num_training)
X_train = X_train[mask]
y_train = y_train[mask]

num_test = 500
mask = range(num_test)
X_test = X_test[mask]
y_test = y_test[mask]
# Reshape the image data into rows
X_train = np.reshape(X_train, (X_train.shape[0], -1))
X_test = np.reshape(X_test, (X_test.shape[0], -1))
print X_train.shape, X_test.shape
(5000, 3072) (500, 3072)
from cs231n.classifiers import KNearestNeighbor

# Create a kNN classifier instance. 
# Remember that training a kNN classifier is a noop: 
# the Classifier simply remembers the data and does no further processing 
classifier = KNearestNeighbor()
classifier.train(X_train, y_train)

We would now like to classify the test data with the kNN classifier. Recall that we can break down this process into two steps:

  1. First we must compute the distances between all test examples and all train examples.
  2. Given these distances, for each test example we find the k nearest examples and have them vote for the label

Lets begin with computing the distance matrix between all training and test examples. For example, if there are Ntr training examples and Nte test examples, this stage should result in a Nte x Ntr matrix where each element (i,j) is the distance between the i-th test and j-th train example.

First, open cs231n/classifiers/k_nearest_neighbor.py and implement the function compute_distances_two_loops that uses a (very inefficient) double loop over all pairs of (test, train) examples and computes the distance matrix one element at a time.

# Open cs231n/classifiers/k_nearest_neighbor.py and implement
# compute_distances_two_loops.

# Test your implementation:
dists = classifier.compute_distances_two_loops(X_test)
print dists.shape
(500, 5000)
# We can visualize the distance matrix: each row is a single test example and
# its distances to training examples
plt.imshow(dists, interpolation='none')
plt.show()
output_7_1.png

Inline Question #1: Notice the structured patterns in the distance matrix, where some rows or columns are visible brighter. (Note that with the default color scheme black indicates low distances while white indicates high distances.)

  • What in the data is the cause behind the distinctly bright rows?
  • What causes the columns?

Your Answer: maybe they are noise, so they are distinctly different with training dataset/test dataset, or sum objects that are not in training dataset

# Now implement the function predict_labels and run the code below:
# We use k = 1 (which is Nearest Neighbor).
y_test_pred = classifier.predict_labels(dists, k=1)

# Compute and print the fraction of correctly predicted examples
num_correct = np.sum(y_test_pred == y_test)
accuracy = float(num_correct) / num_test
print 'Got %d / %d correct => accuracy: %f' % (num_correct, num_test, accuracy)
Got 137 / 500 correct => accuracy: 0.274000

You should expect to see approximately 27% accuracy. Now lets try out a larger k, say k = 5:

y_test_pred = classifier.predict_labels(dists, k=5)
num_correct = np.sum(y_test_pred == y_test)
accuracy = float(num_correct) / num_test
print 'Got %d / %d correct => accuracy: %f' % (num_correct, num_test, accuracy)
Got 142 / 500 correct => accuracy: 0.284000

You should expect to see a slightly better performance than with k = 1.

# Now lets speed up distance matrix computation by using partial vectorization
# with one loop. Implement the function compute_distances_one_loop and run the
# code below:
dists_one = classifier.compute_distances_one_loop(X_test)

# To ensure that our vectorized implementation is correct, we make sure that it
# agrees with the naive implementation. There are many ways to decide whether
# two matrices are similar; one of the simplest is the Frobenius norm. In case
# you haven't seen it before, the Frobenius norm of two matrices is the square
# root of the squared sum of differences of all elements; in other words, reshape
# the matrices into vectors and compute the Euclidean distance between them.
difference = np.linalg.norm(dists - dists_one, ord='fro')
print 'Difference was: %f' % (difference, )
if difference < 0.001:
  print 'Good! The distance matrices are the same'
else:
  print 'Uh-oh! The distance matrices are different'
Difference was: 0.000000
Good! The distance matrices are the same
# Now implement the fully vectorized version inside compute_distances_no_loops
# and run the code
dists_two = classifier.compute_distances_no_loops(X_test)

# check that the distance matrix agrees with the one we computed before:
difference = np.linalg.norm(dists - dists_two, ord='fro')
print 'Difference was: %f' % (difference, )
if difference < 0.001:
  print 'Good! The distance matrices are the same'
else:
  print 'Uh-oh! The distance matrices are different'
Difference was: 0.000000
Good! The distance matrices are the same
# Let's compare how fast the implementations are
def time_function(f, *args):
  """
  Call a function f with args and return the time (in seconds) that it took to execute.
  """
  import time
  tic = time.time()
  f(*args)
  toc = time.time()
  return toc - tic

two_loop_time = time_function(classifier.compute_distances_two_loops, X_test)
print 'Two loop version took %f seconds' % two_loop_time

one_loop_time = time_function(classifier.compute_distances_one_loop, X_test)
print 'One loop version took %f seconds' % one_loop_time

no_loop_time = time_function(classifier.compute_distances_no_loops, X_test)
print 'No loop version took %f seconds' % no_loop_time

# you should see significantly faster performance with the fully vectorized implementation
Two loop version took 54.732456 seconds
One loop version took 42.280427 seconds
No loop version took 0.444748 seconds

Cross-validation

We have implemented the k-Nearest Neighbor classifier but we set the value k = 5 arbitrarily. We will now determine the best value of this hyperparameter with cross-validation.

num_folds = 5
k_choices = [1, 3, 5, 8, 10, 12, 15, 20, 50, 100]

X_train_folds = []
y_train_folds = []
################################################################################
# TODO:                                                                        #
# Split up the training data into folds. After splitting, X_train_folds and    #
# y_train_folds should each be lists of length num_folds, where                #
# y_train_folds[i] is the label vector for the points in X_train_folds[i].     #
# Hint: Look up the numpy array_split function.                                #
################################################################################
X_train_folds = np.array_split(X_train, num_folds)
y_train_folds = np.array_split(y_train, num_folds)
################################################################################
#                                 END OF YOUR CODE                             #
################################################################################

# A dictionary holding the accuracies for different values of k that we find
# when running cross-validation. After running cross-validation,
# k_to_accuracies[k] should be a list of length num_folds giving the different
# accuracy values that we found when using that value of k.
k_to_accuracies = {}

################################################################################
# TODO:                                                                        #
# Perform k-fold cross validation to find the best value of k. For each        #
# possible value of k, run the k-nearest-neighbor algorithm num_folds times,   #
# where in each case you use all but one of the folds as training data and the #
# last fold as a validation set. Store the accuracies for all fold and all     #
# values of k in the k_to_accuracies dictionary.                               #
################################################################################
for k_c in k_choices:
    k_to_accuracies[k_c]=[]
    for i in xrange(num_folds):
        X_cv_train = []
        y_cv_train = []
        X_cv_test = X_train_folds[i]
        y_cv_test = y_train_folds[i]
        num_cv_test = y_cv_test.shape[0]
        for j in xrange(num_folds-1):
            X_cv_train.append(X_train_folds[(i+1+j)%num_folds])
            y_cv_train.append(y_train_folds[(i+1+j)%num_folds])
        X_cv_train = np.concatenate(tuple(X_cv_train))
        y_cv_train = np.concatenate(tuple(y_cv_train))
        
        classifier = KNearestNeighbor()
        classifier.train(X_cv_train, y_cv_train)
        
        dists = classifier.compute_distances_no_loops(X_cv_test)
        
        y_test_pred = classifier.predict_labels(dists, k=k_c)
        num_correct = np.sum(y_test_pred == y_cv_test)
        accuracy = float(num_correct) / num_cv_test
        k_to_accuracies[k_c].append(accuracy)
################################################################################
#                                 END OF YOUR CODE                             #
################################################################################

# Print out the computed accuracies
for k in sorted(k_to_accuracies):
    for accuracy in k_to_accuracies[k]:
        print 'k = %d, accuracy = %f' % (k, accuracy)
k = 1, accuracy = 0.263000
k = 1, accuracy = 0.257000
k = 1, accuracy = 0.264000
k = 1, accuracy = 0.278000
k = 1, accuracy = 0.266000
k = 3, accuracy = 0.241000
k = 3, accuracy = 0.249000
k = 3, accuracy = 0.243000
k = 3, accuracy = 0.273000
k = 3, accuracy = 0.264000
k = 5, accuracy = 0.258000
k = 5, accuracy = 0.273000
k = 5, accuracy = 0.281000
k = 5, accuracy = 0.290000
k = 5, accuracy = 0.272000
k = 8, accuracy = 0.263000
k = 8, accuracy = 0.288000
k = 8, accuracy = 0.278000
k = 8, accuracy = 0.285000
k = 8, accuracy = 0.277000
k = 10, accuracy = 0.265000
k = 10, accuracy = 0.296000
k = 10, accuracy = 0.278000
k = 10, accuracy = 0.284000
k = 10, accuracy = 0.286000
k = 12, accuracy = 0.260000
k = 12, accuracy = 0.294000
k = 12, accuracy = 0.281000
k = 12, accuracy = 0.282000
k = 12, accuracy = 0.281000
k = 15, accuracy = 0.255000
k = 15, accuracy = 0.290000
k = 15, accuracy = 0.281000
k = 15, accuracy = 0.281000
k = 15, accuracy = 0.276000
k = 20, accuracy = 0.270000
k = 20, accuracy = 0.281000
k = 20, accuracy = 0.280000
k = 20, accuracy = 0.282000
k = 20, accuracy = 0.284000
k = 50, accuracy = 0.271000
k = 50, accuracy = 0.288000
k = 50, accuracy = 0.278000
k = 50, accuracy = 0.269000
k = 50, accuracy = 0.266000
k = 100, accuracy = 0.256000
k = 100, accuracy = 0.270000
k = 100, accuracy = 0.263000
k = 100, accuracy = 0.256000
k = 100, accuracy = 0.263000
# plot the raw observations
for k in k_choices:
  accuracies = k_to_accuracies[k]
  plt.scatter([k] * len(accuracies), accuracies)

# plot the trend line with error bars that correspond to standard deviation
accuracies_mean = np.array([np.mean(v) for k,v in sorted(k_to_accuracies.items())])
accuracies_std = np.array([np.std(v) for k,v in sorted(k_to_accuracies.items())])
plt.errorbar(k_choices, accuracies_mean, yerr=accuracies_std)
plt.title('Cross-validation on k')
plt.xlabel('k')
plt.ylabel('Cross-validation accuracy')
plt.show()
out 16.png
# Based on the cross-validation results above, choose the best value for k,   
# retrain the classifier using all the training data, and test it on the test
# data. You should be able to get above 28% accuracy on the test data.
best_k = 7

classifier = KNearestNeighbor()
classifier.train(X_train, y_train)
y_test_pred = classifier.predict(X_test, k=best_k)

# Compute and display the accuracy
num_correct = np.sum(y_test_pred == y_test)
accuracy = float(num_correct) / num_test
print 'Got %d / %d correct => accuracy: %f' % (num_correct, num_test, accuracy)
Got 141 / 500 correct => accuracy: 0.282000

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末护糖,一起剝皮案震驚了整個濱河市利术,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖京闰,帶你破解...
    沈念sama閱讀 219,366評論 6 508
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異鳄抒,居然都是意外死亡冶匹,警方通過查閱死者的電腦和手機,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 93,521評論 3 395
  • 文/潘曉璐 我一進店門虽风,熙熙樓的掌柜王于貴愁眉苦臉地迎上來棒口,“玉大人寄月,你說我怎么就攤上這事∥耷#” “怎么了漾肮?”我有些...
    開封第一講書人閱讀 165,689評論 0 356
  • 文/不壞的土叔 我叫張陵,是天一觀的道長茎毁。 經(jīng)常有香客問我克懊,道長,這世上最難降的妖魔是什么七蜘? 我笑而不...
    開封第一講書人閱讀 58,925評論 1 295
  • 正文 為了忘掉前任谭溉,我火速辦了婚禮,結(jié)果婚禮上橡卤,老公的妹妹穿的比我還像新娘扮念。我一直安慰自己,他們只是感情好碧库,可當(dāng)我...
    茶點故事閱讀 67,942評論 6 392
  • 文/花漫 我一把揭開白布柜与。 她就那樣靜靜地躺著,像睡著了一般嵌灰。 火紅的嫁衣襯著肌膚如雪弄匕。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 51,727評論 1 305
  • 那天沽瞭,我揣著相機與錄音迁匠,去河邊找鬼。 笑死秕脓,一個胖子當(dāng)著我的面吹牛柒瓣,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播吠架,決...
    沈念sama閱讀 40,447評論 3 420
  • 文/蒼蘭香墨 我猛地睜開眼芙贫,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了傍药?” 一聲冷哼從身側(cè)響起磺平,我...
    開封第一講書人閱讀 39,349評論 0 276
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎拐辽,沒想到半個月后拣挪,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 45,820評論 1 317
  • 正文 獨居荒郊野嶺守林人離奇死亡俱诸,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 37,990評論 3 337
  • 正文 我和宋清朗相戀三年菠劝,在試婚紗的時候發(fā)現(xiàn)自己被綠了。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片睁搭。...
    茶點故事閱讀 40,127評論 1 351
  • 序言:一個原本活蹦亂跳的男人離奇死亡赶诊,死狀恐怖笼平,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情舔痪,我是刑警寧澤寓调,帶...
    沈念sama閱讀 35,812評論 5 346
  • 正文 年R本政府宣布,位于F島的核電站锄码,受9級特大地震影響夺英,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜滋捶,卻給世界環(huán)境...
    茶點故事閱讀 41,471評論 3 331
  • 文/蒙蒙 一痛悯、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧重窟,春花似錦灸蟆、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 32,017評論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽可缚。三九已至霎迫,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間帘靡,已是汗流浹背知给。 一陣腳步聲響...
    開封第一講書人閱讀 33,142評論 1 272
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留描姚,地道東北人涩赢。 一個月前我還...
    沈念sama閱讀 48,388評論 3 373
  • 正文 我出身青樓,卻偏偏與公主長得像轩勘,于是被迫代替她去往敵國和親筒扒。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點故事閱讀 45,066評論 2 355

推薦閱讀更多精彩內(nèi)容