Ubuntu AI環(huán)境配置

把a(bǔ)pt的源換成阿里云或國(guó)內(nèi)其它朱巨,速度超快。
vi /etc/apt/sources.list
全部替換

deb http://mirrors.aliyun.com/ubuntu/ bionic main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ bionic-security main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ bionic-updates main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ bionic-proposed main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ bionic-backports main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ bionic main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ bionic-security main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ bionic-updates main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ bionic-proposed main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ bionic-backports main restricted universe multiverse


更換后秒下安裝。
sudo apt-get update && sudo apt-get upgrade

一、Cuda10.1安裝

驅(qū)動(dòng)已經(jīng)事先安裝检激,顯卡gtx1660.

https://developer.nvidia.com/cuda-10.0-download-archive?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1804&target_type=runfilelocal

1.1下載安裝包

image.png

找到對(duì)應(yīng)的版本下載;(用迅雷下載會(huì)快不少,下載完傳到Ubuntu機(jī)器)


image.png
tensorflow 1.13.1只支持到cuda10.0

1.2安裝

查看下載文件

root@doyen-ai:/home/software/ubuntu18.04_cuda10.0# ls
cuda_10.0.130_410.48_linux.run                  libcudnn7-dev_7.5.1.10-1+cuda10.0_amd64.deb
cudnn-10.0-linux-x64-v7.5.1.10.solitairetheme8  libcudnn7-doc_7.5.1.10-1+cuda10.0_amd64.deb
libcudnn7_7.5.1.10-1+cuda10.0_amd64.deb

開始安裝腹侣;
sudo sh cuda_10.0.130_410.48_linux.run


image.png

協(xié)議好長(zhǎng)啊叔收,得回車半天。(cuda10.1就改進(jìn)的很好)

Do you accept the previously read EULA?
accept/decline/quit: accept

Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 410.48?
(y)es/(n)o/(q)uit: n

Install the CUDA 10.0 Toolkit?
(y)es/(n)o/(q)uit: y

Enter Toolkit Location
 [ default is /usr/local/cuda-10.0 ]:  

Do you want to install a symbolic link at /usr/local/cuda?
(y)es/(n)o/(q)uit: y

Install the CUDA 10.0 Samples?
(y)es/(n)o/(q)uit: y

Enter CUDA Samples Location
 [ default is /root ]: 

Installing the CUDA Toolkit in /usr/local/cuda-10.0 ...
Missing recommended library: libGLU.so
Missing recommended library: libX11.so
Missing recommended library: libXi.so
Missing recommended library: libXmu.so

Installing the CUDA Samples in /root ...
Copying samples to /root/NVIDIA_CUDA-10.0_Samples now...
Finished copying samples.

===========
= Summary =
===========

Driver:   Not Selected
Toolkit:  Installed in /usr/local/cuda-10.0
Samples:  Installed in /root, but missing recommended libraries

Please make sure that
 -   PATH includes /usr/local/cuda-10.0/bin
 -   LD_LIBRARY_PATH includes /usr/local/cuda-10.0/lib64, or, add /usr/local/cuda-10.0/lib64 to /etc/ld.so.conf and run ldconfig as root

To uninstall the CUDA Toolkit, run the uninstall script in /usr/local/cuda-10.0/bin

Please see CUDA_Installation_Guide_Linux.pdf in /usr/local/cuda-10.0/doc/pdf for detailed information on setting up CUDA.

***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 384.00 is required for CUDA 10.0 functionality to work.
To install the driver using this installer, run the following command, replacing <CudaInstaller> with the name of this run file:
    sudo <CudaInstaller>.run -silent -driver

Logfile is /tmp/cuda_install_16565.log


提示安裝成功傲隶;

1.3校驗(yàn)

vi ~/.bashrc
在文件最后加上:

export PATH=/usr/local/cuda-10.0/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

命令 source ~/.bashrc 使其生效
查看nvcc -V

root@doyen-ai:/home/software/ubuntu18.04_cuda10.0# source ~/.bashrc
root@doyen-ai:/home/software/ubuntu18.04_cuda10.0# nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2018 NVIDIA Corporation
Built on Sat_Aug_25_21:08:01_CDT_2018
Cuda compilation tools, release 10.0, V10.0.130

安裝成功饺律;

二、Cudnn7.5.1安裝

2.1下載安裝包

https://developer.nvidia.com/rdp/cudnn-download
cudnn需要注冊(cè)登錄方可下載跺株;

image.png

下載紅框內(nèi)標(biāo)記內(nèi)容复濒;

2.2安裝

tar -zxvf cudnn-10.0-linux-x64-v7.5.1.10.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*

sudo dpkg -i libcudnn7_7.5.1.10-1+cuda10.0_amd64.deb
sudo dpkg -i libcudnn7-dev_7.5.1.10-1+cuda10.0_amd64.deb
sudo dpkg -i libcudnn7-doc_7.5.1.10-1+cuda10.0_amd64.deb

執(zhí)行結(jié)果

root@doyen-ai:/home/software/ubuntu18.04_cuda10.0# tar -zxvf cudnn-10.0-linux-x64-v7.5.1.10.tgz
1.10-1+cuda10.0_amd64.deb
sudo dpkg -i libcudnn7-dev_7.5.1.10-1+cuda10.0_amd64.deb
sudo dpkg -i libcudnn7-doc_7.5.1.10-1+cuda10.0_amd64.debcuda/include/cudnn.h
cuda/NVIDIA_SLA_cuDNN_Support.txt
cuda/lib64/libcudnn.so
cuda/lib64/libcudnn.so.7
cuda/lib64/libcudnn.so.7.5.1
cuda/lib64/libcudnn_static.a
root@doyen-ai:/home/software/ubuntu18.04_cuda10.0# sudo cp cuda/include/cudnn.h /usr/local/cuda/include
root@doyen-ai:/home/software/ubuntu18.04_cuda10.0# sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
root@doyen-ai:/home/software/ubuntu18.04_cuda10.0# sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libc
root@doyen-ai:/home/software/ubuntu18.04_cuda10.0# 
root@doyen-ai:/home/software/ubuntu18.04_cuda10.0# sudo dpkg -i libcudnn7_7.5.1.10-1+cuda10.0_amd64.deb
正在選中未選擇的軟件包 libcudnn7光戈。
(正在讀取數(shù)據(jù)庫(kù) ... 系統(tǒng)當(dāng)前共安裝有 168675 個(gè)文件和目錄弟晚。)
正準(zhǔn)備解包 libcudnn7_7.5.1.10-1+cuda10.0_amd64.deb  ...
正在解包 libcudnn7 (7.5.1.10-1+cuda10.0) ...
正在設(shè)置 libcudnn7 (7.5.1.10-1+cuda10.0) ...
正在處理用于 libc-bin (2.27-3ubuntu1) 的觸發(fā)器 ...
root@doyen-ai:/home/software/ubuntu18.04_cuda10.0# sudo dpkg -i libcudnn7-dev_7.5.1.10-1+cuda10.0_amd64.deb
正在選中未選擇的軟件包 libcudnn7-dev死嗦。
(正在讀取數(shù)據(jù)庫(kù) ... 系統(tǒng)當(dāng)前共安裝有 168681 個(gè)文件和目錄非区。)
正準(zhǔn)備解包 libcudnn7-dev_7.5.1.10-1+cuda10.0_amd64.deb  ...
正在解包 libcudnn7-dev (7.5.1.10-1+cuda10.0) ...
正在設(shè)置 libcudnn7-dev (7.5.1.10-1+cuda10.0) ...
update-alternatives: 使用 /usr/include/x86_64-linux-gnu/cudnn_v7.h 來(lái)在自動(dòng)模式中提供 /usr/include/cudnn.h (libcudnn)
root@doyen-ai:/home/software/ubuntu18.04_cuda10.0# sudo dpkg -i libcudnn7-doc_7.5.1.10-1+cuda10.0_amd64.deb
正在選中未選擇的軟件包 libcudnn7-doc。
(正在讀取數(shù)據(jù)庫(kù) ... 系統(tǒng)當(dāng)前共安裝有 168687 個(gè)文件和目錄傲诵。)
正準(zhǔn)備解包 libcudnn7-doc_7.5.1.10-1+cuda10.0_amd64.deb  ...
正在解包 libcudnn7-doc (7.5.1.10-1+cuda10.0) ...
正在設(shè)置 libcudnn7-doc (7.5.1.10-1+cuda10.0) ...


2.3校驗(yàn)

查看cudnn版本命令
cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

root@doyen-ai:/home/software/ubuntu18.04_cuda10.0# cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
#define CUDNN_MAJOR 7
#define CUDNN_MINOR 5
#define CUDNN_PATCHLEVEL 1
--
#define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)

#include "driver_types.h"

正常運(yùn)行耕腾;

三孔轴、tensorflow-gpu安裝

3.1查看python環(huán)境

root@doyen-ai:/home# python

Command 'python' not found, but can be installed with:

apt install python3       
apt install python        
apt install python-minimal

You also have python3 installed, you can run 'python3' instead.

Ubuntu18.04默認(rèn)安裝了python3.6.8
···
root@doyen-ai:/home# python3
Python 3.6.8 (default, Jan 14 2019, 11:02:34)
[GCC 8.0.1 20180414 (experimental) [trunk revision 259383]] on linux
Type "help", "copyright", "credits" or "license" for more information.

···

3.2安裝pip

apt-get install python3-pip python3-dev

root@doyen-ai:/home# pip3 -V
pip 9.0.1 from /usr/lib/python3/dist-packages (python 3.6)

再安裝setuptools
pip3 install setuptools --upgrade

3.3安裝tensorflow-gpu

pip3 install tensorflow-gpu

root@doyen-ai:/home# pip3 install tensorflow-gpu
Collecting tensorflow-gpu
  Downloading https://files.pythonhosted.org/packages/7b/b1/0ad4ae02e17ddd62109cd54c291e311c4b5fd09b4d0678d3d6ce4159b0f0/tensorflow_gpu-1.13.1-cp36-cp36m-manylinux1_x86_64.whl (345.2MB)

Successfully installed absl-py-0.7.1 astor-0.7.1 gast-0.2.2 grpcio-1.20.1 h5py-2.9.0 keras-applications-1.0.7 keras-preprocessing-1.0.9 markdown-3.1 mock-3.0.5 numpy-1.16.3 protobuf-3.7.1 tensorboard-1.13.1 tensorflow-estimator-1.13.0 tensorflow-gpu-1.13.1 termcolor-1.1.0 werkzeug-0.15.4

提示安裝完成蛆封;

3.4檢驗(yàn)安裝

root@doyen-ai:/home# python3
Python 3.6.8 (default, Jan 14 2019, 11:02:34) 
[GCC 8.0.1 20180414 (experimental) [trunk revision 259383]] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow as tf
>>> a = tf.random_normal((100, 100))
>>> b = tf.random_normal((100, 500))
>>> c = tf.matmul(a, b)
>>> sess = tf.InteractiveSession()
2019-05-16 15:57:26.741765: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
2019-05-16 15:57:27.372247: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:998] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-05-16 15:57:27.373652: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x1619150 executing computations on platform CUDA. Devices:
2019-05-16 15:57:27.373734: I tensorflow/compiler/xla/service/service.cc:158]   StreamExecutor device (0): GeForce GTX 1660, Compute Capability 7.5
2019-05-16 15:57:27.400388: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 2904000000 Hz
2019-05-16 15:57:27.401583: I tensorflow/compiler/xla/service/service.cc:150] XLA service 0x1cdd240 executing computations on platform Host. Devices:
2019-05-16 15:57:27.401651: I tensorflow/compiler/xla/service/service.cc:158]   StreamExecutor device (0): <undefined>, <undefined>
2019-05-16 15:57:27.402011: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1433] Found device 0 with properties: 
name: GeForce GTX 1660 major: 7 minor: 5 memoryClockRate(GHz): 1.83
pciBusID: 0000:01:00.0
totalMemory: 5.80GiB freeMemory: 5.73GiB
2019-05-16 15:57:27.402066: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1512] Adding visible gpu devices: 0
2019-05-16 15:57:27.405302: I tensorflow/core/common_runtime/gpu/gpu_device.cc:984] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-05-16 15:57:27.405366: I tensorflow/core/common_runtime/gpu/gpu_device.cc:990]      0 
2019-05-16 15:57:27.405390: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1003] 0:   N 
2019-05-16 15:57:27.405581: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 5567 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1660, pci bus id: 0000:01:00.0, compute capability: 7.5)
>>> sess.run(c)
2019-05-16 15:57:45.835122: I tensorflow/stream_executor/dso_loader.cc:152] successfully opened CUDA library libcublas.so.10.0 locally
array([[  6.262812 ,  -1.9345528,  10.1873865, ...,   9.533573 ,
         -7.4053297,  -4.2541947],
       [ 10.201033 ,   3.6828916,  -2.0874305, ...,  11.704482 ,
          2.2292233, -12.751171 ],
       [ -4.9506807,  -7.9405203,  11.641254 , ...,  10.210195 ,
         -3.6261683,  -1.245208 ],
       ...,
       [  6.1733346, -11.296464 ,  -6.5138006, ...,  -8.0698185,
         -4.31228  ,   6.034325 ],
       [  8.435815 ,  -6.479247 ,  -1.6091456, ...,   5.5824223,
          5.4707727,  11.140205 ],
       [ -8.973054 , -10.001549 , -15.808032 , ...,  20.240196 ,
          7.126047 ,   9.673972 ]], dtype=float32)
>>> 


感覺Ubuntu18.04 gtx1660顯卡比win10版本gtx1060顯卡速度快很多唇礁。

四、安裝opencv4.1帶cuda應(yīng)用

4.1安裝腳本

安裝教程很多惨篱,整個(gè)腳本自動(dòng)運(yùn)行就好試試看盏筐。匹配Ubuntu 18.04.
找到cuda相關(guān)的顯卡算力是6.1,算力地址是:
https://developer.nvidia.com/cuda-gpus
腳本默認(rèn)下載opencv源碼是dev版本砸讳。
穩(wěn)定版請(qǐng)用相關(guān)語(yǔ)句替換

curl -L https://github.com/opencv/opencv/archive/4.1.0.zip -o opencv.zip
curl -L https://github.com/opencv/opencv_contrib/archive/4.1.0.zip -o opencv_contrib.zip
unzip opencv.zip 
unzip opencv_contrib.zip 
cd opencv/

installOpenCV-4-on-Ubuntu-18-04.sh

#!/bin/bash
#
if [ "$#" -ne 1 ]; then
    echo "Usage: $0 <Install Folder>"
    exit
fi
folder="$1"

echo "** Install requirement"
sudo apt-get update
sudo apt-get install -y build-essential cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev pkg-config
sudo apt-get install -y libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev
sudo apt-get install -y python2.7-dev python3.6-dev python-dev python-numpy python3-numpy
sudo apt-get install -y libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev
sudo apt-get install -y libv4l-dev v4l-utils qv4l2 v4l2ucp 
sudo apt-get install -y curl
sudo apt-get update

echo "** Download opencv-4.1.0"
cd $folder
curl -L https://github.com/opencv/opencv/archive/4.1.0.zip -o opencv-4.1.0.zip
curl -L https://github.com/opencv/opencv_contrib/archive/4.1.0.zip -o opencv_contrib-4.1.0.zip
unzip opencv-4.1.0.zip 
unzip opencv_contrib-4.1.0.zip 
cd opencv-4.1.0/

echo "** Building..."
mkdir release
cd release/
cmake \
  -D CMAKE_BUILD_TYPE=RELEASE \
  -D OPENCV_GENERATE_PKGCONFIG=YES \
  -D CMAKE_INSTALL_PREFIX=/usr/local \
  -D OPENCV_EXTRA_MODULES_PATH=../../opencv_contrib-4.1.0/modules  \
  -D CUDA_CUDA_LIBRARY=/usr/local/cuda/lib64/stubs/libcuda.so \
  -D CUDA_ARCH_BIN=6.1 \
  -D CUDA_ARCH_PTX="" \
  -D WITH_CUDA=ON \
  -D WITH_TBB=ON \
  -D BUILD_opencv_python3=ON \
  -D BUILD_TESTS=OFF \
  -D BUILD_PERF_TESTS=OFF \
  -D WITH_V4L=ON \
  -D INSTALL_C_EXAMPLES=ON \
  -D INSTALL_PYTHON_EXAMPLES=ON \
  -D BUILD_EXAMPLES=ON \
  -D WITH_OPENGL=ON \
  -D ENABLE_FAST_MATH=1 \
  -D CUDA_FAST_MATH=1 \
  -D WITH_CUBLAS=1 \
  -D WITH_NVCUVID=ON \
  -D WITH_GSTREAMER=ON \
  -D WITH_OPENCL=YES \
  -D WITH_QT=ON \
  -D BUILD_opencv_cudacodec=OFF ..

make -j8
sudo make install
echo "** Install opencv-4.1.0 successfully"
echo "** Bye :)"

如果碰到下載不下來(lái)的琢融,可以先下載然后改相關(guān)的路徑重新cmake即可楷拳。


image.png

image.png

4.2測(cè)試python opencv4

root@doyen-ai:/home/software/opencv/build# python3
Python 3.6.8 (default, Jan 14 2019, 11:02:34) 
[GCC 8.0.1 20180414 (experimental) [trunk revision 259383]] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import cv2
>>> print(cv2.__version__)
4.1.0-dev


五、安裝pytorch1.1帶cuda10.0

https://pytorch.org/get-started/locally/

image.png

pip3 install https://download.pytorch.org/whl/cu100/torch-1.1.0-cp36-cp36m-linux_x86_64.whl
pip3 install torchvision
root@doyen-ai:/home/software# python3
Python 3.6.8 (default, Jan 14 2019, 11:02:34) 
[GCC 8.0.1 20180414 (experimental) [trunk revision 259383]] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> 


正常加載吏奸;

六、安裝mxnet

http://mxnet.incubator.apache.org

image.png

cuda10.0
需要用
pip3 install mxnet-cu100

root@doyen-ai:/home/software# python3
Python 3.6.8 (default, Jan 14 2019, 11:02:34) 
[GCC 8.0.1 20180414 (experimental) [trunk revision 259383]] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import mxnet as mx
>>> mx.__version__
'1.4.1'
>>> a = mx.nd.ones((2, 3), mx.gpu())
>>> b  = a*2+1
>>> b
[[3. 3. 3.]
 [3. 3. 3.]]
<NDArray 2x3 @gpu(0)>
>>> 

全文完
(折騰10個(gè)小時(shí)左右,cuda10.1不支持tensorflow1.13陶耍,重新安裝系統(tǒng)花費(fèi)時(shí)間較長(zhǎng)奋蔚,編譯opencv4花費(fèi)時(shí)間較長(zhǎng))。

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末烈钞,一起剝皮案震驚了整個(gè)濱河市泊碑,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌毯欣,老刑警劉巖馒过,帶你破解...
    沈念sama閱讀 219,270評(píng)論 6 508
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場(chǎng)離奇詭異酗钞,居然都是意外死亡腹忽,警方通過(guò)查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 93,489評(píng)論 3 395
  • 文/潘曉璐 我一進(jìn)店門砚作,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái)窘奏,“玉大人,你說(shuō)我怎么就攤上這事葫录∽殴” “怎么了?”我有些...
    開封第一講書人閱讀 165,630評(píng)論 0 356
  • 文/不壞的土叔 我叫張陵米同,是天一觀的道長(zhǎng)骇扇。 經(jīng)常有香客問(wèn)我,道長(zhǎng)面粮,這世上最難降的妖魔是什么少孝? 我笑而不...
    開封第一講書人閱讀 58,906評(píng)論 1 295
  • 正文 為了忘掉前任,我火速辦了婚禮但金,結(jié)果婚禮上韭山,老公的妹妹穿的比我還像新娘。我一直安慰自己冷溃,他們只是感情好钱磅,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,928評(píng)論 6 392
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著似枕,像睡著了一般盖淡。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上凿歼,一...
    開封第一講書人閱讀 51,718評(píng)論 1 305
  • 那天褪迟,我揣著相機(jī)與錄音冗恨,去河邊找鬼。 笑死味赃,一個(gè)胖子當(dāng)著我的面吹牛掀抹,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播心俗,決...
    沈念sama閱讀 40,442評(píng)論 3 420
  • 文/蒼蘭香墨 我猛地睜開眼傲武,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來(lái)了城榛?” 一聲冷哼從身側(cè)響起揪利,我...
    開封第一講書人閱讀 39,345評(píng)論 0 276
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎狠持,沒想到半個(gè)月后疟位,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 45,802評(píng)論 1 317
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡喘垂,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,984評(píng)論 3 337
  • 正文 我和宋清朗相戀三年甜刻,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片正勒。...
    茶點(diǎn)故事閱讀 40,117評(píng)論 1 351
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡罢吃,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出昭齐,到底是詐尸還是另有隱情尿招,我是刑警寧澤,帶...
    沈念sama閱讀 35,810評(píng)論 5 346
  • 正文 年R本政府宣布阱驾,位于F島的核電站就谜,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏里覆。R本人自食惡果不足惜丧荐,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,462評(píng)論 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望喧枷。 院中可真熱鬧虹统,春花似錦、人聲如沸隧甚。這莊子的主人今日做“春日...
    開封第一講書人閱讀 32,011評(píng)論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)戚扳。三九已至忧便,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間帽借,已是汗流浹背珠增。 一陣腳步聲響...
    開封第一講書人閱讀 33,139評(píng)論 1 272
  • 我被黑心中介騙來(lái)泰國(guó)打工超歌, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人蒂教。 一個(gè)月前我還...
    沈念sama閱讀 48,377評(píng)論 3 373
  • 正文 我出身青樓巍举,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國(guó)和親凝垛。 傳聞我的和親對(duì)象是個(gè)殘疾皇子禀综,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 45,060評(píng)論 2 355

推薦閱讀更多精彩內(nèi)容