Reading Note: Single-Shot Refinement Neural Network for Object Detection

TITLE: Single-Shot Refinement Neural Network for Object Detection

AUTHOR: Shifeng Zhang, LongyinWen, Xiao Bian, Zhen Lei, Stan Z. Li

ASSOCIATION: CACIA, GE Global Research

FROM: arXiv:1711.06897

CONTRIBUTION

  1. A novel one-stage framework for object detection is introduced, composed of two inter-connected modules, i.e., the ARM (Anchor Refinement Module) and the ODM (Object Detection Module). This leads to performance better than the two-stage approach while maintaining high efficiency of the one-stage approach.
  2. To ensure the effectiveness, TCB (Transfer Connection Block) is designed to transfer the features in the ARM to handle more challenging tasks, i.e., predict accurate object locations, sizes and class labels, in the ODM.
  3. RefineDet achieves the latest state-of-the-art results on generic object detection

METHOD

The idea of this work can be seen as an improvement based on DSSD method. The DSSD method uses multi-scale feature maps to predict categories and regress bounding boxes. In DSSD, deconvolution is also used to increase the resolution of the last feature maps. In this work, a binary classifier and a coarse regressor is added to the downsampling stages. Their outputs are the inputs to the multi-category classifier and fine regressor. The framework this single-shot refinement neural network is illustrated in the following figure.

Framework

Anchor Refinement Module

The ARM is designed to (1) identify and remove negative anchors to reduce search space for the classifier, and (2) coarsely adjust the locations and sizes of anchors to provide better initialization for the subsequent regressor.

In training phase, for a refined anchor box, if its negative confidence is larger than a preset threshold θ (i.e., set θ = 0.99 empirically), we will discard it in training the ODM.

Object Detection Module

The ODM takes the refined anchors as the input from the former to further improve the regression and predict multi-class labels.

Transfer Connection Block

TCB is introduced to convert features of different layers from the ARM, into the form required by the ODM, so that the ODM can share features from the ARM. Another function of the TCBs is to integrate large-scale context by adding the high-level features to the transferred features to improve detection accuracy. An illustration of TCB can be found in the following figure.

TCB

Training

The training method is much like SSD. The experiment result and comparison with other method can be found in the following table.

TCB
最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末虚茶,一起剝皮案震驚了整個(gè)濱河市戈鲁,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌嘹叫,老刑警劉巖婆殿,帶你破解...
    沈念sama閱讀 206,968評論 6 482
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異罩扇,居然都是意外死亡婆芦,警方通過查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 88,601評論 2 382
  • 文/潘曉璐 我一進(jìn)店門喂饥,熙熙樓的掌柜王于貴愁眉苦臉地迎上來消约,“玉大人,你說我怎么就攤上這事员帮』蛄福” “怎么了?”我有些...
    開封第一講書人閱讀 153,220評論 0 344
  • 文/不壞的土叔 我叫張陵集侯,是天一觀的道長被啼。 經(jīng)常有香客問我帜消,道長,這世上最難降的妖魔是什么浓体? 我笑而不...
    開封第一講書人閱讀 55,416評論 1 279
  • 正文 為了忘掉前任泡挺,我火速辦了婚禮,結(jié)果婚禮上命浴,老公的妹妹穿的比我還像新娘娄猫。我一直安慰自己,他們只是感情好生闲,可當(dāng)我...
    茶點(diǎn)故事閱讀 64,425評論 5 374
  • 文/花漫 我一把揭開白布媳溺。 她就那樣靜靜地躺著,像睡著了一般碍讯。 火紅的嫁衣襯著肌膚如雪悬蔽。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 49,144評論 1 285
  • 那天捉兴,我揣著相機(jī)與錄音蝎困,去河邊找鬼。 笑死倍啥,一個(gè)胖子當(dāng)著我的面吹牛禾乘,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播虽缕,決...
    沈念sama閱讀 38,432評論 3 401
  • 文/蒼蘭香墨 我猛地睜開眼始藕,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了氮趋?” 一聲冷哼從身側(cè)響起伍派,我...
    開封第一講書人閱讀 37,088評論 0 261
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎凭峡,沒想到半個(gè)月后拙已,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 43,586評論 1 300
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡摧冀,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 36,028評論 2 325
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了系宫。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片索昂。...
    茶點(diǎn)故事閱讀 38,137評論 1 334
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖扩借,靈堂內(nèi)的尸體忽然破棺而出椒惨,到底是詐尸還是另有隱情,我是刑警寧澤潮罪,帶...
    沈念sama閱讀 33,783評論 4 324
  • 正文 年R本政府宣布康谆,位于F島的核電站领斥,受9級特大地震影響,放射性物質(zhì)發(fā)生泄漏沃暗。R本人自食惡果不足惜月洛,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 39,343評論 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望孽锥。 院中可真熱鬧嚼黔,春花似錦、人聲如沸惜辑。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,333評論 0 19
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春陶因,著一層夾襖步出監(jiān)牢的瞬間锋喜,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 31,559評論 1 262
  • 我被黑心中介騙來泰國打工戴陡, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 45,595評論 2 355
  • 正文 我出身青樓轴合,卻偏偏與公主長得像,于是被迫代替她去往敵國和親碗短。 傳聞我的和親對象是個(gè)殘疾皇子受葛,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 42,901評論 2 345