在構(gòu)建屬于自己的神經(jīng)網(wǎng)絡(luò)(一)中,介紹了神經(jīng)網(wǎng)絡(luò)的基本原理通砍,用一個(gè)簡(jiǎn)單的一次多項(xiàng)式說(shuō)了一下基本過(guò)程卑硫,今天就將(一)中的最簡(jiǎn)單三層神經(jīng)網(wǎng)絡(luò)的原理介紹一下,加深神經(jīng)網(wǎng)絡(luò)的理解尔店。
神經(jīng)網(wǎng)絡(luò)中幾個(gè)重要的參數(shù)以及函數(shù)介紹
- 輸入數(shù)據(jù):我們對(duì)數(shù)據(jù)進(jìn)行分類眨攘、回歸還是其他的操作時(shí)輸入到神經(jīng)網(wǎng)絡(luò)中的數(shù)據(jù)主慰,這些數(shù)據(jù)有的可以直接作為輸入,有的需要編碼后輸入
- 層:神經(jīng)網(wǎng)絡(luò)中的層次就是常說(shuō)的輸入層鲫售、輸出層共螺、隱藏層(可以有多個(gè))
- 單元:神經(jīng)網(wǎng)絡(luò)中各個(gè)層次包含的神經(jīng)元,就是圖中的各個(gè)小圓圈
- 激活函數(shù):輸入到神經(jīng)網(wǎng)絡(luò)中的數(shù)據(jù)在各個(gè)層次的傳遞并不是簡(jiǎn)單的輸入與輸出情竹,就像我們?nèi)梭w的神經(jīng)藐不,當(dāng)有人輕輕碰了你一下的時(shí)候你可能沒(méi)感覺(jué),但是有人打了你一下你立馬就有反應(yīng)一樣秦效,不是所有的信號(hào)都要在神經(jīng)網(wǎng)絡(luò)中傳遞雏蛮,有的信號(hào)可以傳遞很弱,有的信號(hào)可以傳遞很強(qiáng)阱州,這就是激活函數(shù)的作用挑秉,輸入到神經(jīng)網(wǎng)絡(luò)中各個(gè)單元的數(shù)據(jù)通過(guò)激活函數(shù)后再向下一層次傳遞。
- 輸出數(shù)據(jù):神經(jīng)網(wǎng)絡(luò)訓(xùn)練后形成的數(shù)據(jù)苔货。
- 真實(shí)數(shù)據(jù): 實(shí)際采集到的數(shù)據(jù)犀概。
- 損失函數(shù):真實(shí)數(shù)據(jù)與神經(jīng)網(wǎng)絡(luò)輸出數(shù)據(jù)的差值作為輸入,定義神經(jīng)網(wǎng)絡(luò)誤差所形成的函數(shù)夜惭。
- 目標(biāo):我們最終要實(shí)現(xiàn)的效果阱冶,分類?回歸滥嘴?等等吧
-
優(yōu)化器:誤差反向傳遞木蹬,優(yōu)化神經(jīng)網(wǎng)絡(luò)中各權(quán)重的鏈接節(jié)點(diǎn),實(shí)現(xiàn)數(shù)據(jù)梯度下降所采用的函數(shù)若皱。
神經(jīng)網(wǎng)絡(luò)中的數(shù)據(jù)流動(dòng)(張量流動(dòng)(tensorflow))
待更新镊叁。。走触。