第四課第一周編程作業(yè)assignment1-Convolution+model+-+Application

Convolutional Neural Networks: Application

Welcome to Course 4's second assignment! In this notebook, you will:

  • Implement helper functions that you will use when implementing a TensorFlow model
  • Implement a fully functioning ConvNet using TensorFlow

After this assignment you will be able to:

  • Build and train a ConvNet in TensorFlow for a classification problem

We assume here that you are already familiar with TensorFlow. If you are not, please refer the TensorFlow Tutorial of the third week of Course 2 ("Improving deep neural networks").

1.0 - TensorFlow model

In the previous assignment, you built helper functions using numpy to understand the mechanics behind convolutional neural networks. Most practical applications of deep learning today are built using programming frameworks, which have many built-in functions you can simply call.

As usual, we will start by loading in the packages.

import math
import numpy as np
import h5py
import matplotlib.pyplot as plt
import scipy
from PIL import Image
from scipy import ndimage
import tensorflow as tf
from tensorflow.python.framework import ops
from cnn_utils import *

%matplotlib inline
np.random.seed(1)

Run the next cell to load the "SIGNS" dataset you are going to use.

# Loading the data (signs)
X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset()

As a reminder, the SIGNS dataset is a collection of 6 signs representing numbers from 0 to 5.

<img src="images/SIGNS.png" style="width:800px;height:300px;">

The next cell will show you an example of a labelled image in the dataset. Feel free to change the value of index below and re-run to see different examples.

# Example of a picture
index = 6
plt.imshow(X_train_orig[index])
print ("y = " + str(np.squeeze(Y_train_orig[:, index])))

In Course 2, you had built a fully-connected network for this dataset. But since this is an image dataset, it is more natural to apply a ConvNet to it.

To get started, let's examine the shapes of your data.

X_train = X_train_orig/255.
X_test = X_test_orig/255.
Y_train = convert_to_one_hot(Y_train_orig, 6).T
Y_test = convert_to_one_hot(Y_test_orig, 6).T
print ("number of training examples = " + str(X_train.shape[0]))
print ("number of test examples = " + str(X_test.shape[0]))
print ("X_train shape: " + str(X_train.shape))
print ("Y_train shape: " + str(Y_train.shape))
print ("X_test shape: " + str(X_test.shape))
print ("Y_test shape: " + str(Y_test.shape))
conv_layers = {}

1.1 - Create placeholders

TensorFlow requires that you create placeholders for the input data that will be fed into the model when running the session.

Exercise: Implement the function below to create placeholders for the input image X and the output Y. You should not define the number of training examples for the moment. To do so, you could use "None" as the batch size, it will give you the flexibility to choose it later. Hence X should be of dimension [None, n_H0, n_W0, n_C0] and Y should be of dimension [None, n_y]. Hint.

# GRADED FUNCTION: create_placeholders

def create_placeholders(n_H0, n_W0, n_C0, n_y):
    """
    Creates the placeholders for the tensorflow session.
    
    Arguments:
    n_H0 -- scalar, height of an input image
    n_W0 -- scalar, width of an input image
    n_C0 -- scalar, number of channels of the input
    n_y -- scalar, number of classes
        
    Returns:
    X -- placeholder for the data input, of shape [None, n_H0, n_W0, n_C0] and dtype "float"
    Y -- placeholder for the input labels, of shape [None, n_y] and dtype "float"
    """

    ### START CODE HERE ### (≈2 lines)
    X = tf.placeholder(name='X', shape=(None, n_H0, n_W0, n_C0), dtype=tf.float32)
    Y = tf.placeholder(name='Y', shape=(None, n_y), dtype=tf.float32)
    ### END CODE HERE ###
    
    return X, Y
X, Y = create_placeholders(64, 64, 3, 6)
print ("X = " + str(X))
print ("Y = " + str(Y))

Expected Output
X = Tensor("Placeholder:0", shape=(?, 64, 64, 3), dtype=float32)

Y = Tensor("Placeholder_1:0", shape=(?, 6), dtype=float32)

1.2 - Initialize parameters

You will initialize weights/filters W1 and W2 using tf.contrib.layers.xavier_initializer(seed = 0). You don't need to worry about bias variables as you will soon see that TensorFlow functions take care of the bias. Note also that you will only initialize the weights/filters for the conv2d functions. TensorFlow initializes the layers for the fully connected part automatically. We will talk more about that later in this assignment.

Exercise: Implement initialize_parameters(). The dimensions for each group of filters are provided below. Reminder - to initialize a parameter W of shape [1,2,3,4] in Tensorflow, use:

W = tf.get_variable("W", [1,2,3,4], initializer = ...)

More Info.

# GRADED FUNCTION: initialize_parameters

def initialize_parameters():
    """
    Initializes weight parameters to build a neural network with tensorflow. The shapes are:
                        W1 : [4, 4, 3, 8]
                        W2 : [2, 2, 8, 16]
    Returns:
    parameters -- a dictionary of tensors containing W1, W2
    """
    
    tf.set_random_seed(1)                              # so that your "random" numbers match ours
        
    ### START CODE HERE ### (approx. 2 lines of code)
    W1 = tf.get_variable(name='W1', dtype=tf.float32, shape=(4, 4, 3, 8), initializer=tf.contrib.layers.xavier_initializer(seed = 0))
    W2 = tf.get_variable(name='W2', dtype=tf.float32, shape=(2, 2, 8, 16), initializer=tf.contrib.layers.xavier_initializer(seed = 0))
    ### END CODE HERE ###

    parameters = {"W1": W1,
                  "W2": W2}
    
    return parameters
tf.reset_default_graph()
with tf.Session() as sess_test:
    parameters = initialize_parameters()
    init = tf.global_variables_initializer()
    sess_test.run(init)
    print("W1 = " + str(parameters["W1"].eval()[1,1,1]))
    print("W2 = " + str(parameters["W2"].eval()[1,1,1]))

** Expected Output:**
W1 =
[ 0.00131723 0.14176141 -0.04434952 0.09197326 0.14984085 -0.03514394
-0.06847463 0.05245192]
W2 =
[-0.08566415 0.17750949 0.11974221 0.16773748 -0.0830943 -0.08058
-0.00577033 -0.14643836 0.24162132 -0.05857408 -0.19055021 0.1345228
-0.22779644 -0.1601823 -0.16117483 -0.10286498]

1.2 - Forward propagation

In TensorFlow, there are built-in functions that carry out the convolution steps for you.

  • tf.nn.conv2d(X,W1, strides = [1,s,s,1], padding = 'SAME'): given an input X and a group of filters W1, this function convolves W1's filters on X. The third input ([1,f,f,1]) represents the strides for each dimension of the input (m, n_H_prev, n_W_prev, n_C_prev). You can read the full documentation here

  • tf.nn.max_pool(A, ksize = [1,f,f,1], strides = [1,s,s,1], padding = 'SAME'): given an input A, this function uses a window of size (f, f) and strides of size (s, s) to carry out max pooling over each window. You can read the full documentation here

  • tf.nn.relu(Z1): computes the elementwise ReLU of Z1 (which can be any shape). You can read the full documentation here.

  • tf.contrib.layers.flatten(P): given an input P, this function flattens each example into a 1D vector it while maintaining the batch-size. It returns a flattened tensor with shape [batch_size, k]. You can read the full documentation here.

  • tf.contrib.layers.fully_connected(F, num_outputs): given a the flattened input F, it returns the output computed using a fully connected layer. You can read the full documentation here.

In the last function above (tf.contrib.layers.fully_connected), the fully connected layer automatically initializes weights in the graph and keeps on training them as you train the model. Hence, you did not need to initialize those weights when initializing the parameters.

Exercise:

Implement the forward_propagation function below to build the following model: CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED. You should use the functions above.

In detail, we will use the following parameters for all the steps:
- Conv2D: stride 1, padding is "SAME"
- ReLU
- Max pool: Use an 8 by 8 filter size and an 8 by 8 stride, padding is "SAME"
- Conv2D: stride 1, padding is "SAME"
- ReLU
- Max pool: Use a 4 by 4 filter size and a 4 by 4 stride, padding is "SAME"
- Flatten the previous output.
- FULLYCONNECTED (FC) layer: Apply a fully connected layer without an non-linear activation function. Do not call the softmax here. This will result in 6 neurons in the output layer, which then get passed later to a softmax. In TensorFlow, the softmax and cost function are lumped together into a single function, which you'll call in a different function when computing the cost.

# GRADED FUNCTION: forward_propagation

def forward_propagation(X, parameters):
    """
    Implements the forward propagation for the model:
    CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED
    
    Arguments:
    X -- input dataset placeholder, of shape (input size, number of examples)
    parameters -- python dictionary containing your parameters "W1", "W2"
                  the shapes are given in initialize_parameters

    Returns:
    Z3 -- the output of the last LINEAR unit
    """
    
    # Retrieve the parameters from the dictionary "parameters" 
    W1 = parameters['W1']
    W2 = parameters['W2']
    
    ### START CODE HERE ###
    # CONV2D: stride of 1, padding 'SAME'
    Z1 = tf.nn.conv2d(input=X, filter=W1, strides=(1, 1, 1, 1), padding='SAME')
    # RELU
    A1 = tf.nn.relu(Z1)
    # MAXPOOL: window 8x8, sride 8, padding 'SAME'
    P1 = tf.nn.max_pool(value=A1, ksize=(1, 8, 8, 1), strides=(1, 8, 8, 1), padding='SAME')
    # CONV2D: filters W2, stride 1, padding 'SAME'
    Z2 = tf.nn.conv2d(input=P1, filter=W2, strides=(1, 1, 1, 1), padding='SAME')
    # RELU
    A2 = tf.nn.relu(Z2)
    # MAXPOOL: window 4x4, stride 4, padding 'SAME'
    P2 = tf.nn.max_pool(value=A2, ksize=(1, 4, 4, 1), strides=(1, 4, 4, 1), padding='SAME')
    # FLATTEN
    P2 = tf.contrib.layers.flatten(inputs=P2)
    # FULLY-CONNECTED without non-linear activation function (not not call softmax).
    # 6 neurons in output layer. Hint: one of the arguments should be "activation_fn=None" 
    Z3 = tf.contrib.layers.fully_connected(P2, 6, activation_fn=None)
    ### END CODE HERE ###

    return Z3
tf.reset_default_graph()

with tf.Session() as sess:
    np.random.seed(1)
    X, Y = create_placeholders(64, 64, 3, 6)
    parameters = initialize_parameters()
    Z3 = forward_propagation(X, parameters)
    init = tf.global_variables_initializer()
    sess.run(init)
    a = sess.run(Z3, {X: np.random.randn(2,64,64,3), Y: np.random.randn(2,6)})
    print("Z3 = " + str(a))

Expected Output:
Z3 =
[[-0.44670227 -1.57208765 -1.53049231 -2.31013036 -1.29104376 0.46852064]
[-0.17601591 -1.57972014 -1.4737016 -2.61672091 -1.00810647 0.5747785 ]]

1.3 - Compute cost

Implement the compute cost function below. You might find these two functions helpful:

  • tf.nn.softmax_cross_entropy_with_logits(logits = Z3, labels = Y): computes the softmax entropy loss. This function both computes the softmax activation function as well as the resulting loss. You can check the full documentation here.
  • tf.reduce_mean: computes the mean of elements across dimensions of a tensor. Use this to sum the losses over all the examples to get the overall cost. You can check the full documentation here.

** Exercise**: Compute the cost below using the function above.

# GRADED FUNCTION: compute_cost 

def compute_cost(Z3, Y):
    """
    Computes the cost
    
    Arguments:
    Z3 -- output of forward propagation (output of the last LINEAR unit), of shape (6, number of examples)
    Y -- "true" labels vector placeholder, same shape as Z3
    
    Returns:
    cost - Tensor of the cost function
    """
    
    ### START CODE HERE ### (1 line of code)
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=Z3, labels=Y))
    ### END CODE HERE ###
    
    return cost
tf.reset_default_graph()

with tf.Session() as sess:
    np.random.seed(1)
    X, Y = create_placeholders(64, 64, 3, 6)
    parameters = initialize_parameters()
    Z3 = forward_propagation(X, parameters)
    cost = compute_cost(Z3, Y)
    init = tf.global_variables_initializer()
    sess.run(init)
    a = sess.run(cost, {X: np.random.randn(4,64,64,3), Y: np.random.randn(4,6)})
    print("cost = " + str(a))

Expected Output:
cost =
2.91034

1.4 Model

Finally you will merge the helper functions you implemented above to build a model. You will train it on the SIGNS dataset.

You have implemented random_mini_batches() in the Optimization programming assignment of course 2. Remember that this function returns a list of mini-batches.

Exercise: Complete the function below.

The model below should:

  • create placeholders
  • initialize parameters
  • forward propagate
  • compute the cost
  • create an optimizer

Finally you will create a session and run a for loop for num_epochs, get the mini-batches, and then for each mini-batch you will optimize the function. Hint for initializing the variables

# GRADED FUNCTION: model

def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.009,
          num_epochs = 100, minibatch_size = 64, print_cost = True):
    """
    Implements a three-layer ConvNet in Tensorflow:
    CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED
    
    Arguments:
    X_train -- training set, of shape (None, 64, 64, 3)
    Y_train -- test set, of shape (None, n_y = 6)
    X_test -- training set, of shape (None, 64, 64, 3)
    Y_test -- test set, of shape (None, n_y = 6)
    learning_rate -- learning rate of the optimization
    num_epochs -- number of epochs of the optimization loop
    minibatch_size -- size of a minibatch
    print_cost -- True to print the cost every 100 epochs
    
    Returns:
    train_accuracy -- real number, accuracy on the train set (X_train)
    test_accuracy -- real number, testing accuracy on the test set (X_test)
    parameters -- parameters learnt by the model. They can then be used to predict.
    """
    
    ops.reset_default_graph()                         # to be able to rerun the model without overwriting tf variables
    tf.set_random_seed(1)                             # to keep results consistent (tensorflow seed)
    seed = 3                                          # to keep results consistent (numpy seed)
    (m, n_H0, n_W0, n_C0) = X_train.shape             
    n_y = Y_train.shape[1]                            
    costs = []                                        # To keep track of the cost
    
    # Create Placeholders of the correct shape
    ### START CODE HERE ### (1 line)
    X, Y = create_placeholders(n_H0, n_W0, n_C0, n_y)
    ### END CODE HERE ###

    # Initialize parameters
    ### START CODE HERE ### (1 line)
    parameters = initialize_parameters()
    ### END CODE HERE ###
    
    # Forward propagation: Build the forward propagation in the tensorflow graph
    ### START CODE HERE ### (1 line)
    Z3 = forward_propagation(X, parameters)
    ### END CODE HERE ###
    
    # Cost function: Add cost function to tensorflow graph
    ### START CODE HERE ### (1 line)
    cost = compute_cost(Z3, Y)
    ### END CODE HERE ###
    
    # Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer that minimizes the cost.
    ### START CODE HERE ### (1 line)
    optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
    ### END CODE HERE ###
    
    # Initialize all the variables globally
    init = tf.global_variables_initializer()
     
    # Start the session to compute the tensorflow graph
    with tf.Session() as sess:
        
        # Run the initialization
        sess.run(init)
        
        # Do the training loop
        for epoch in range(num_epochs):

            minibatch_cost = 0.
            num_minibatches = int(m / minibatch_size) # number of minibatches of size minibatch_size in the train set
            seed = seed + 1
            minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed)

            for minibatch in minibatches:

                # Select a minibatch
                (minibatch_X, minibatch_Y) = minibatch
                # IMPORTANT: The line that runs the graph on a minibatch.
                # Run the session to execute the optimizer and the cost, the feedict should contain a minibatch for (X,Y).
                ### START CODE HERE ### (1 line)
                _ , temp_cost = sess.run([optimizer, cost], feed_dict={X:minibatch_X, Y:minibatch_Y})
                ### END CODE HERE ###
                
                minibatch_cost += temp_cost / num_minibatches
                

            # Print the cost every epoch
            if print_cost == True and epoch % 5 == 0:
                print ("Cost after epoch %i: %f" % (epoch, minibatch_cost))
            if print_cost == True and epoch % 1 == 0:
                costs.append(minibatch_cost)
        
        
        # plot the cost
        plt.plot(np.squeeze(costs))
        plt.ylabel('cost')
        plt.xlabel('iterations (per tens)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()

        # Calculate the correct predictions
        predict_op = tf.argmax(Z3, 1)
        correct_prediction = tf.equal(predict_op, tf.argmax(Y, 1))
        
        # Calculate accuracy on the test set
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
        print(accuracy)
        train_accuracy = accuracy.eval({X: X_train, Y: Y_train})
        test_accuracy = accuracy.eval({X: X_test, Y: Y_test})
        print("Train Accuracy:", train_accuracy)
        print("Test Accuracy:", test_accuracy)
                
        return train_accuracy, test_accuracy, parameters

Run the following cell to train your model for 100 epochs. Check if your cost after epoch 0 and 5 matches our output. If not, stop the cell and go back to your code!

_, _, parameters = model(X_train, Y_train, X_test, Y_test)

Expected output: although it may not match perfectly, your expected output should be close to ours and your cost value should decrease.

Cost after epoch 0 = Cost after epoch 5 = Train Accuracy = Test Accuracy =
1.917929 1.506757 0.940741 0.783333

Congratulations! You have finised the assignment and built a model that recognizes SIGN language with almost 80% accuracy on the test set. If you wish, feel free to play around with this dataset further. You can actually improve its accuracy by spending more time tuning the hyperparameters, or using regularization (as this model clearly has a high variance).

Once again, here's a thumbs up for your work!

fname = "images/thumbs_up.jpg"
image = np.array(ndimage.imread(fname, flatten=False))
my_image = scipy.misc.imresize(image, size=(64,64))
plt.imshow(my_image)
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子荔睹,更是在濱河造成了極大的恐慌圆兵,老刑警劉巖,帶你破解...
    沈念sama閱讀 216,591評(píng)論 6 501
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件拾氓,死亡現(xiàn)場(chǎng)離奇詭異,居然都是意外死亡,警方通過(guò)查閱死者的電腦和手機(jī)市袖,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 92,448評(píng)論 3 392
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái)烁涌,“玉大人苍碟,你說(shuō)我怎么就攤上這事〈橹矗” “怎么了微峰?”我有些...
    開(kāi)封第一講書(shū)人閱讀 162,823評(píng)論 0 353
  • 文/不壞的土叔 我叫張陵,是天一觀的道長(zhǎng)抒钱。 經(jīng)常有香客問(wèn)我蜓肆,道長(zhǎng),這世上最難降的妖魔是什么谋币? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 58,204評(píng)論 1 292
  • 正文 為了忘掉前任仗扬,我火速辦了婚禮,結(jié)果婚禮上蕾额,老公的妹妹穿的比我還像新娘早芭。我一直安慰自己,他們只是感情好诅蝶,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,228評(píng)論 6 388
  • 文/花漫 我一把揭開(kāi)白布退个。 她就那樣靜靜地躺著,像睡著了一般调炬。 火紅的嫁衣襯著肌膚如雪语盈。 梳的紋絲不亂的頭發(fā)上,一...
    開(kāi)封第一講書(shū)人閱讀 51,190評(píng)論 1 299
  • 那天筐眷,我揣著相機(jī)與錄音黎烈,去河邊找鬼。 笑死,一個(gè)胖子當(dāng)著我的面吹牛照棋,可吹牛的內(nèi)容都是我干的资溃。 我是一名探鬼主播,決...
    沈念sama閱讀 40,078評(píng)論 3 418
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼烈炭,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼溶锭!你這毒婦竟也來(lái)了?” 一聲冷哼從身側(cè)響起符隙,我...
    開(kāi)封第一講書(shū)人閱讀 38,923評(píng)論 0 274
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤趴捅,失蹤者是張志新(化名)和其女友劉穎,沒(méi)想到半個(gè)月后霹疫,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體拱绑,經(jīng)...
    沈念sama閱讀 45,334評(píng)論 1 310
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,550評(píng)論 2 333
  • 正文 我和宋清朗相戀三年丽蝎,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了猎拨。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 39,727評(píng)論 1 348
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡屠阻,死狀恐怖红省,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情国觉,我是刑警寧澤吧恃,帶...
    沈念sama閱讀 35,428評(píng)論 5 343
  • 正文 年R本政府宣布,位于F島的核電站麻诀,受9級(jí)特大地震影響痕寓,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜蝇闭,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,022評(píng)論 3 326
  • 文/蒙蒙 一厂抽、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧丁眼,春花似錦、人聲如沸昭殉。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 31,672評(píng)論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)挪丢。三九已至蹂风,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間乾蓬,已是汗流浹背惠啄。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 32,826評(píng)論 1 269
  • 我被黑心中介騙來(lái)泰國(guó)打工, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人撵渡。 一個(gè)月前我還...
    沈念sama閱讀 47,734評(píng)論 2 368
  • 正文 我出身青樓融柬,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國(guó)和親趋距。 傳聞我的和親對(duì)象是個(gè)殘疾皇子粒氧,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 44,619評(píng)論 2 354

推薦閱讀更多精彩內(nèi)容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi閱讀 7,322評(píng)論 0 10
  • 一 我想 我們還在十六歲 求你不要孤單 二 我記得你穿球鞋的模樣 記得你手腕的白色橡膠手環(huán) 卻偏偏記不...
    YNiiiiii閱讀 431評(píng)論 0 5
  • 前幾天開(kāi)始我才關(guān)注到簡(jiǎn)書(shū)這個(gè)平臺(tái),慢慢的我發(fā)現(xiàn)這上面有一群可愛(ài)的人节腐,心情不好的時(shí)候可以在這里吐槽外盯,會(huì)有暖心的陌生人...
    wangleiiii閱讀 2,602評(píng)論 24 19
  • 年輕真好,至少有勇氣可以失戀翼雀。而我饱苟,似乎連戀的勇氣都快被磨滅。有的人廝守一生白頭偕老狼渊∠浒荆可最終,還是會(huì)有一人先行離開(kāi)...
    子不歸兮奈若何閱讀 167評(píng)論 0 0