Pytorch深度學(xué)習(xí)-用DenseNet訓(xùn)練CIFAR10數(shù)據(jù)集

CIFAR10數(shù)據(jù)集來(lái)源:torchvision.datasets.CIFAR10()

CIFAR10數(shù)據(jù)集是一個(gè)用于識(shí)別普適物體的小型數(shù)據(jù)集斥滤,一共包含10個(gè)類(lèi)別的RGB彩色圖片奋早,圖片尺寸大小為32x32,如圖:

CIFAR10.png

相較于MNIST數(shù)據(jù)集洛二,MNIST數(shù)據(jù)集是28x28的單通道灰度圖舱沧,而CIFAR10數(shù)據(jù)集是32x32的RGB三通道彩色圖妹沙,CIFAR10數(shù)據(jù)集更接近于真實(shí)世界的圖片。

1. 數(shù)據(jù)集構(gòu)建

每個(gè)像素點(diǎn)即每條數(shù)據(jù)中的值范圍為0-255熟吏,有的數(shù)字過(guò)大不利于訓(xùn)練且難以收斂距糖,故將其歸一化到(0-1)之間

# 數(shù)據(jù)集處理

# transforms.RandomHorizontalFlip(p=0.5)---以0.5的概率對(duì)圖片做水平橫向翻轉(zhuǎn)
transform_train = transforms.Compose([transforms.RandomHorizontalFlip(p=0.5),
                                      transforms.ToTensor(),
                                      transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))])

# transforms.ToTensor()---shape從(H,W,C)->(C,H,W), 每個(gè)像素點(diǎn)從(0-255)映射到(0-1):直接除以255
# transforms.Normalize---先將輸入歸一化到(0,1),像素點(diǎn)通過(guò)"(x-mean)/std",將每個(gè)元素分布到(-1,1)
transform = transforms.Compose([transforms.ToTensor(),
                                transforms.Normalize(std=(0.485, 0.456, 0.406), mean=(0.226, 0.224, 0.225))])

train_dataset = datasets.CIFAR10(root="../DataSet/cifar10", train=True, transform=transform_train,
                                 download=True)
test_dataset = datasets.CIFAR10(root="../DataSet/cifar10", train=False, transform=transform,
                                download=True)

train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)



2.構(gòu)建DenseNet網(wǎng)絡(luò)模型

1)構(gòu)建 DenseNet-Block單元

class Bottleneck(nn.Module):
    def __init__(self, input_channel, growth_rate):
        super(Bottleneck, self).__init__()

        self.bn1 = nn.BatchNorm2d(input_channel)
        self.relu1 = nn.ReLU(inplace=True)

        self.conv1 = nn.Conv2d(input_channel, 4 * growth_rate, kernel_size=1)
        self.bn2 = nn.BatchNorm2d(4 * growth_rate)
        self.relu2 = nn.ReLU(inplace=True)

        self.conv2 = nn.Conv2d(4 * growth_rate, growth_rate, kernel_size=3, padding=1)

    def forward(self, x):
        out = self.conv1(self.relu1(self.bn1(x)))
        out = self.conv2(self.relu2(self.bn2(out)))
        out = torch.cat([out, x], 1)
        return out

2)Transition模塊---連接兩個(gè)DenseNet_Block

class Transition(nn.Module):
    def __init__(self, input_channels, out_channels):
        super(Transition, self).__init__()

        self.bn = nn.BatchNorm2d(input_channels)
        self.relu = nn.ReLU(inplace=True)
        self.conv = nn.Conv2d(input_channels, out_channels, kernel_size=1)

    def forward(self, x):
        out = self.conv(self.relu(self.bn(x)))
        out = F.avg_pool2d(out, 2)
        return out

3. 構(gòu)建損失函數(shù)和優(yōu)化器

損失函數(shù)采用CrossEntropyLoss
優(yōu)化器采用 SGD 隨機(jī)梯度優(yōu)化算法

# 構(gòu)造損失函數(shù)和優(yōu)化器
criterion = nn.CrossEntropyLoss()
opt = optim.SGD(model.parameters(), lr=0.01, momentum=0.8, weight_decay=5e-4)

# 動(dòng)態(tài)更新學(xué)習(xí)率------每隔step_size : lr = lr * gamma
schedule = optim.lr_scheduler.StepLR(opt, step_size=10, gamma=0.6, last_epoch=-1)

4.完整代碼

import math
import torch.nn.functional as F
import torch
from torch import nn, optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from matplotlib import pyplot as plt
import time

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# transforms.RandomHorizontalFlip(p=0.5)---以0.5的概率對(duì)圖片做水平橫向翻轉(zhuǎn)
transform_train = transforms.Compose([transforms.RandomHorizontalFlip(p=0.5),
                                      transforms.ToTensor(),
                                      transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))])

# transforms.ToTensor()---shape從(H,W,C)->(C,H,W), 每個(gè)像素點(diǎn)從(0-255)映射到(0-1):直接除以255
# transforms.Normalize---先將輸入歸一化到(0,1),像素點(diǎn)通過(guò)"(x-mean)/std",將每個(gè)元素分布到(-1,1)
transform = transforms.Compose([transforms.ToTensor(),
                                transforms.Normalize(std=(0.485, 0.456, 0.406), mean=(0.226, 0.224, 0.225))])

train_dataset = datasets.CIFAR10(root="../DataSet/cifar10", train=True, transform=transform_train,
                                 download=True)
test_dataset = datasets.CIFAR10(root="../DataSet/cifar10", train=False, transform=transform,
                                download=True)

train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)


class Bottleneck(nn.Module):
    def __init__(self, input_channel, growth_rate):
        super(Bottleneck, self).__init__()

        self.bn1 = nn.BatchNorm2d(input_channel)
        self.relu1 = nn.ReLU(inplace=True)

        self.conv1 = nn.Conv2d(input_channel, 4 * growth_rate, kernel_size=1)
        self.bn2 = nn.BatchNorm2d(4 * growth_rate)
        self.relu2 = nn.ReLU(inplace=True)

        self.conv2 = nn.Conv2d(4 * growth_rate, growth_rate, kernel_size=3, padding=1)

    def forward(self, x):
        out = self.conv1(self.relu1(self.bn1(x)))
        out = self.conv2(self.relu2(self.bn2(out)))
        out = torch.cat([out, x], 1)
        return out


class Transition(nn.Module):
    def __init__(self, input_channels, out_channels):
        super(Transition, self).__init__()

        self.bn = nn.BatchNorm2d(input_channels)
        self.relu = nn.ReLU(inplace=True)
        self.conv = nn.Conv2d(input_channels, out_channels, kernel_size=1)

    def forward(self, x):
        out = self.conv(self.relu(self.bn(x)))
        out = F.avg_pool2d(out, 2)
        return out


class DenseNet(nn.Module):
    def __init__(self, nblocks, growth_rate, reduction, num_classes):
        super(DenseNet, self).__init__()

        self.growth_rate = growth_rate

        num_planes = 2 * growth_rate

        self.basic_conv = nn.Sequential(

            nn.Conv2d(3, 2 * growth_rate, kernel_size=7, stride=2, padding=3),
            nn.BatchNorm2d(2 * growth_rate),
            nn.ReLU(inplace=True),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        )

        self.dense1 = self._make_dense_layers(num_planes, nblocks[0])
        num_planes += nblocks[0] * growth_rate
        out_planes = int(math.floor(num_planes * reduction))
        self.trans1 = Transition(num_planes, out_planes)
        num_planes = out_planes

        self.dense2 = self._make_dense_layers(num_planes, nblocks[1])
        num_planes += nblocks[1] * growth_rate
        out_planes = int(math.floor(num_planes * reduction))
        self.trans2 = Transition(num_planes, out_planes)
        num_planes = out_planes

        self.dense3 = self._make_dense_layers(num_planes, nblocks[2])
        num_planes += nblocks[2] * growth_rate
        out_planes = int(math.floor(num_planes * reduction))
        self.trans3 = Transition(num_planes, out_planes)
        num_planes = out_planes

        self.dense4 = self._make_dense_layers(num_planes, nblocks[3])
        num_planes += nblocks[3] * growth_rate

        self.AdaptiveAvgPool2d = nn.AdaptiveAvgPool2d(1)

        # 全連接層
        self.fc = nn.Sequential(

            nn.Linear(num_planes, 256),
            nn.ReLU(inplace=True),
            # 使一半的神經(jīng)元不起作用玄窝,防止參數(shù)量過(guò)大導(dǎo)致過(guò)擬合
            nn.Dropout(0.5),

            nn.Linear(256, 128),
            nn.ReLU(inplace=True),
            nn.Dropout(0.5),

            nn.Linear(128, 10)
        )

    def _make_dense_layers(self, in_planes, nblock):
        layers = []
        for i in range(nblock):
            layers.append(Bottleneck(in_planes, self.growth_rate))
            in_planes += self.growth_rate

        return nn.Sequential(*layers)

    def forward(self, x):
        out = self.basic_conv(x)
        out = self.trans1(self.dense1(out))
        out = self.trans2(self.dense2(out))
        out = self.trans3(self.dense3(out))
        out = self.dense4(out)
        out = self.AdaptiveAvgPool2d(out)

        out = out.view(out.size(0), -1)
        
        out = self.fc(out)
        return out


def DenseNet121():
    return DenseNet([6, 12, 24, 16], growth_rate=32, reduction=0.5, num_classes=10)


def DenseNet169():
    return DenseNet([6, 12, 32, 32], growth_rate=32, reduction=0.5, num_classes=10)


def DenseNet201():
    return DenseNet([6, 12, 48, 32], growth_rate=32, reduction=0.5, num_classes=10)


def DenseNet265():
    return DenseNet([6, 12, 64, 48], growth_rate=32, reduction=0.5, num_classes=10)


# 初始化模型
model = DenseNet121().to(device)

# 構(gòu)造損失函數(shù)和優(yōu)化器
criterion = nn.CrossEntropyLoss()
opt = optim.SGD(model.parameters(), lr=0.01, momentum=0.8, weight_decay=0.001)

# 動(dòng)態(tài)更新學(xué)習(xí)率------每隔step_size : lr = lr * gamma
schedule = optim.lr_scheduler.StepLR(opt, step_size=10, gamma=0.6, last_epoch=-1)

loss_list = []


# train
def train(epoch):
    start = time.time()
    for epoch in range(epoch):
        running_loss = 0.0
        for i, (inputs, labels) in enumerate(train_loader, 0):

            inputs, labels = inputs.to(device), labels.to(device)

            # 將數(shù)據(jù)送入模型訓(xùn)練
            outputs = model(inputs)
            # 計(jì)算損失
            loss = criterion(outputs, labels).to(device)

            # 重置梯度
            opt.zero_grad()
            # 計(jì)算梯度,反向傳播
            loss.backward()
            # 根據(jù)反向傳播的梯度值優(yōu)化更新參數(shù)
            opt.step()

            # 100個(gè)batch的 loss 之和
            running_loss += loss.item()
            loss_list.append(loss.item())

            # 每100個(gè) batch 查看一下 平均loss
            if (i + 1) % 100 == 0:
                print('epoch = %d , batch = %d , loss = %.6f' % (epoch + 1, i + 1, running_loss / 100))
                running_loss = 0.0

        # 每一輪結(jié)束輸出一下當(dāng)前的學(xué)習(xí)率 lr
        lr_1 = opt.param_groups[0]['lr']
        print("learn_rate:%.15f" % lr_1)
        schedule.step()
        verify()

    end = time.time()
    # 計(jì)算并打印輸出你的訓(xùn)練時(shí)間
    print("time:{}".format(end - start))

    # 訓(xùn)練過(guò)程可視化
    plt.plot(loss_list)
    plt.ylabel('loss')
    plt.xlabel('Epoch')
    plt.savefig('./DenseNet_train_img.png')
    plt.show()


# Test
def verify():
    model.eval()
    correct = 0.0
    total = 0
    # 訓(xùn)練模式不需要反向傳播更新梯度
    with torch.no_grad():
        print("===========================test===========================")
        for inputs, labels in test_loader:
            inputs, labels = inputs.to(device), labels.to(device)
            outputs = model(inputs)

            pred = outputs.argmax(dim=1)  # 返回每一行中最大值元素索引
            total += inputs.size(0)
            correct += torch.eq(pred, labels).sum().item()

    print("Accuracy of the network on the 10000 test images:%.2f %%" % (100 * correct / total))
    print("==========================================================")


if __name__ == '__main__':
    train(100)
    verify()
    # DenseNet: 所有卷積層全部使用使用3*3的卷積核, 兩個(gè)3*3=一個(gè)5*5 同時(shí)可以減少參數(shù)量, 加深神經(jīng)網(wǎng)絡(luò)的深度
    # 使用 DenseNet 神經(jīng)網(wǎng)絡(luò)訓(xùn)練 CIFAR10 數(shù)據(jù)集



?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末悍引,一起剝皮案震驚了整個(gè)濱河市恩脂,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌趣斤,老刑警劉巖俩块,帶你破解...
    沈念sama閱讀 218,122評(píng)論 6 505
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場(chǎng)離奇詭異浓领,居然都是意外死亡玉凯,警方通過(guò)查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 93,070評(píng)論 3 395
  • 文/潘曉璐 我一進(jìn)店門(mén)联贩,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái)漫仆,“玉大人,你說(shuō)我怎么就攤上這事泪幌∶ぱ幔” “怎么了?”我有些...
    開(kāi)封第一講書(shū)人閱讀 164,491評(píng)論 0 354
  • 文/不壞的土叔 我叫張陵祸泪,是天一觀的道長(zhǎng)吗浩。 經(jīng)常有香客問(wèn)我,道長(zhǎng)没隘,這世上最難降的妖魔是什么懂扼? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 58,636評(píng)論 1 293
  • 正文 為了忘掉前任,我火速辦了婚禮升略,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘屡限。我一直安慰自己品嚣,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,676評(píng)論 6 392
  • 文/花漫 我一把揭開(kāi)白布钧大。 她就那樣靜靜地躺著翰撑,像睡著了一般。 火紅的嫁衣襯著肌膚如雪啊央。 梳的紋絲不亂的頭發(fā)上眶诈,一...
    開(kāi)封第一講書(shū)人閱讀 51,541評(píng)論 1 305
  • 那天,我揣著相機(jī)與錄音瓜饥,去河邊找鬼逝撬。 笑死,一個(gè)胖子當(dāng)著我的面吹牛乓土,可吹牛的內(nèi)容都是我干的宪潮。 我是一名探鬼主播溯警,決...
    沈念sama閱讀 40,292評(píng)論 3 418
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼狡相!你這毒婦竟也來(lái)了梯轻?” 一聲冷哼從身側(cè)響起,我...
    開(kāi)封第一講書(shū)人閱讀 39,211評(píng)論 0 276
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤尽棕,失蹤者是張志新(化名)和其女友劉穎喳挑,沒(méi)想到半個(gè)月后,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體滔悉,經(jīng)...
    沈念sama閱讀 45,655評(píng)論 1 314
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡伊诵,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,846評(píng)論 3 336
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了氧敢。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片日戈。...
    茶點(diǎn)故事閱讀 39,965評(píng)論 1 348
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖孙乖,靈堂內(nèi)的尸體忽然破棺而出浙炼,到底是詐尸還是另有隱情,我是刑警寧澤唯袄,帶...
    沈念sama閱讀 35,684評(píng)論 5 347
  • 正文 年R本政府宣布弯屈,位于F島的核電站,受9級(jí)特大地震影響恋拷,放射性物質(zhì)發(fā)生泄漏资厉。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,295評(píng)論 3 329
  • 文/蒙蒙 一蔬顾、第九天 我趴在偏房一處隱蔽的房頂上張望宴偿。 院中可真熱鬧,春花似錦诀豁、人聲如沸窄刘。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 31,894評(píng)論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)娩践。三九已至,卻和暖如春烹骨,著一層夾襖步出監(jiān)牢的瞬間翻伺,已是汗流浹背。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 33,012評(píng)論 1 269
  • 我被黑心中介騙來(lái)泰國(guó)打工沮焕, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留吨岭,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 48,126評(píng)論 3 370
  • 正文 我出身青樓峦树,卻偏偏與公主長(zhǎng)得像未妹,于是被迫代替她去往敵國(guó)和親簿废。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 44,914評(píng)論 2 355

推薦閱讀更多精彩內(nèi)容