macOS安裝caffe(CPU-only)

電腦型號:MacBook Pro (Retina, 13-inch, Early 2015)

1.安裝Anaconda Python到 /usr/local/Cellar 目錄下

網(wǎng)址:Download Anaconda Now!

2.安裝Homebrew

打開你的terminal~輸入

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

3.安裝CMake

brew install cmake

4.安裝依賴

terminal輸入

for x in snappy leveldb gflags glog szip hdf5 lmdb homebrew/science/opencv;
do
    brew uninstall $x;
   brew install --fresh -vd $x;
done
brew uninstall --force protobuf; brew install --with-python --fresh -vd protobuf
brew uninstall boost boost-python; brew install --fresh -vd boost boost-python

5.安裝Caffe

前面都是下載一些依賴現(xiàn)在才正式開始安裝caffe

下載caffe源碼

cd  /usr/local/Cellar

這里直接用git去clone

git clone https://github.com/BVLC/caffe.git
cd caffe
cp Makefile.config.example Makefile.config

其實我們用的CMake不用改Makefile.config可是心理作用還是改一下吧敢靡,找到Makefile.config(剛copy出來的)搜索CPU_ONLY := 1 ,取消注釋

6.生成Makefile文件

## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!

# cuDNN acceleration switch (uncomment to build with cuDNN).
# USE_CUDNN := 1

# CPU-only switch (uncomment to build without GPU support).
 CPU_ONLY := 1

# uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0

# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
#   You should not set this flag if you will be reading LMDBs with any
#   possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1

# Uncomment if you're using OpenCV 3
# OPENCV_VERSION := 3

# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++

# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr

# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \
        -gencode arch=compute_20,code=sm_21 \
        -gencode arch=compute_30,code=sm_30 \
        -gencode arch=compute_35,code=sm_35 \
        -gencode arch=compute_50,code=sm_50 \
        -gencode arch=compute_52,code=sm_52 \
        -gencode arch=compute_60,code=sm_60 \
        -gencode arch=compute_61,code=sm_61 \
        -gencode arch=compute_61,code=compute_61

# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas

# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib

# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app

# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
PYTHON_INCLUDE := /usr/include/python2.7 \
        /usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it's in root.
 ANACONDA_HOME := /usr/local/Cellar/anaconda
 PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
         $(ANACONDA_HOME)/include/python2.7 \
         $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include

# Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
#                 /usr/lib/python3.5/dist-packages/numpy/core/include

# We need to be able to find libpythonX.X.so or .dylib.
#PYTHON_LIB := /usr/lib
 PYTHON_LIB := $(ANACONDA_HOME)/lib

# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib

# Uncomment to support layers written in Python (will link against Python libs)
 WITH_PYTHON_LAYER := 1

# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib

# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib

# NCCL acceleration switch (uncomment to build with NCCL)
# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
# USE_NCCL := 1

# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1

# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute

# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1

# The ID of the GPU that 'make runtest' will use to run unit tests.
TEST_GPUID := 0

# enable pretty build (comment to see full commands)
Q ?= @

7.安裝caffe的python接口

cd /usr/local/Cellar/caffe
for req in $(cat python/requirements.txt); do pip install $req; done

8.設(shè)置python環(huán)境變量

cd 
sudo vim .bash_profile

添加環(huán)境變量后如下

# added by Anaconda2 4.4.0 installer
export PATH="/usr/local/Cellar/anaconda/bin:$PATH"
export PYTHONPATH=/usr/local/Cellar/caffe/python:$PYTHONPATH

9.安裝

mkdir build
cd build
cmake ..
make all -j
make runtest -j
make pytest -j

10.注意

1.執(zhí)行cmake后python版本為Anaconda版本苦银,不是系統(tǒng)自帶的版本啸胧。
2.make pytest 時會報錯缺少幾個模塊。直接復(fù)制模塊名字如protobuf

conda install protobuf

11.最后進(jìn)入Python幔虏,執(zhí)行

import caffe

無報錯成功7哪睢!想括!

12.引用

http://www.reibang.com/p/cc16e2977e27
https://zhuanlan.zhihu.com/write

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末陷谱,一起剝皮案震驚了整個濱河市,隨后出現(xiàn)的幾起案子瑟蜈,更是在濱河造成了極大的恐慌烟逊,老刑警劉巖,帶你破解...
    沈念sama閱讀 212,185評論 6 493
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件踪栋,死亡現(xiàn)場離奇詭異焙格,居然都是意外死亡,警方通過查閱死者的電腦和手機(jī)夷都,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 90,445評論 3 385
  • 文/潘曉璐 我一進(jìn)店門眷唉,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人囤官,你說我怎么就攤上這事冬阳。” “怎么了党饮?”我有些...
    開封第一講書人閱讀 157,684評論 0 348
  • 文/不壞的土叔 我叫張陵肝陪,是天一觀的道長。 經(jīng)常有香客問我刑顺,道長氯窍,這世上最難降的妖魔是什么饲常? 我笑而不...
    開封第一講書人閱讀 56,564評論 1 284
  • 正文 為了忘掉前任,我火速辦了婚禮狼讨,結(jié)果婚禮上贝淤,老公的妹妹穿的比我還像新娘。我一直安慰自己政供,他們只是感情好播聪,可當(dāng)我...
    茶點故事閱讀 65,681評論 6 386
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著布隔,像睡著了一般离陶。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上衅檀,一...
    開封第一講書人閱讀 49,874評論 1 290
  • 那天招刨,我揣著相機(jī)與錄音,去河邊找鬼术吝。 笑死计济,一個胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的排苍。 我是一名探鬼主播沦寂,決...
    沈念sama閱讀 39,025評論 3 408
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼淘衙!你這毒婦竟也來了传藏?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 37,761評論 0 268
  • 序言:老撾萬榮一對情侶失蹤彤守,失蹤者是張志新(化名)和其女友劉穎毯侦,沒想到半個月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體具垫,經(jīng)...
    沈念sama閱讀 44,217評論 1 303
  • 正文 獨居荒郊野嶺守林人離奇死亡侈离,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 36,545評論 2 327
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了筝蚕。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片卦碾。...
    茶點故事閱讀 38,694評論 1 341
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖起宽,靈堂內(nèi)的尸體忽然破棺而出洲胖,到底是詐尸還是另有隱情,我是刑警寧澤坯沪,帶...
    沈念sama閱讀 34,351評論 4 332
  • 正文 年R本政府宣布绿映,位于F島的核電站,受9級特大地震影響腐晾,放射性物質(zhì)發(fā)生泄漏叉弦。R本人自食惡果不足惜丐一,卻給世界環(huán)境...
    茶點故事閱讀 39,988評論 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望卸奉。 院中可真熱鬧钝诚,春花似錦、人聲如沸榄棵。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,778評論 0 21
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽疹鳄。三九已至,卻和暖如春芦岂,著一層夾襖步出監(jiān)牢的瞬間瘪弓,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 32,007評論 1 266
  • 我被黑心中介騙來泰國打工禽最, 沒想到剛下飛機(jī)就差點兒被人妖公主榨干…… 1. 我叫王不留腺怯,地道東北人。 一個月前我還...
    沈念sama閱讀 46,427評論 2 360
  • 正文 我出身青樓川无,卻偏偏與公主長得像呛占,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子懦趋,可洞房花燭夜當(dāng)晚...
    茶點故事閱讀 43,580評論 2 349

推薦閱讀更多精彩內(nèi)容