Description
Write a program to find the nth super ugly number.
Super ugly numbers are positive numbers whose all prime factors are in the given prime list primes
of size k
. For example, [1, 2, 4, 7, 8, 13, 14, 16, 19, 26, 28, 32]
is the sequence of the first 12 super ugly numbers given primes
= [2, 7, 13, 19]
of size 4.
Note:
(1) 1
is a super ugly number for any given primes
.
(2) The given numbers in primes
are in ascending order.
(3) 0 < k
≤ 100, 0 < n
≤ 106, 0 < primes[i]
< 1000.
(4) The nth super ugly number is guaranteed to fit in a 32-bit signed integer.
Credits:
Special thanks to @dietpepsi for adding this problem and creating all test cases.
Solution
DP
跟"264. Ugly Number II"相同的思路,由3 pointers擴(kuò)展成pointers array塘匣。依然要注意去重!
class Solution {
public int nthSuperUglyNumber(int n, int[] primes) {
int[] uglyNums = new int[n];
int k = primes.length;
int[] indexes = new int[k];
uglyNums[0] = 1;
for (int i = 1; i < n; ++i) {
uglyNums[i] = Integer.MAX_VALUE;
for (int j = 0; j < k; ++j) {
uglyNums[i] = Math.min(uglyNums[i]
, primes[j] * uglyNums[indexes[j]]);
}
for (int j = 0; j < k; ++j) {
if (primes[j] * uglyNums[indexes[j]] == uglyNums[i]) {
++indexes[j];
}
}
}
return uglyNums[n - 1];
}
}
minHeap
也可以用heap做盟蚣。
class Solution {
public int nthSuperUglyNumber(int n, int[] primes) {
int[] uglyNums = new int[n];
PriorityQueue<Tuple> queue
= new PriorityQueue<>((a, b) -> a.v - b.v);
uglyNums[0] = 1;
for (int prime : primes) {
queue.offer(new Tuple(0, prime, prime));
}
for (int i = 1; i < n; ++i) {
uglyNums[i] = queue.peek().v;
// deal with duplicates
while (!queue.isEmpty() && queue.peek().v == uglyNums[i]) {
Tuple curr = queue.poll();
queue.offer(new Tuple(curr.i + 1, curr.p
, uglyNums[curr.i] * curr.p));
}
}
return uglyNums[n - 1];
}
class Tuple {
int i; // index in uglyNums
int p; // prime
int v; // value
public Tuple(int i, int p, int v) {
this.i = i;
this.p = p;
this.v = v;
}
}
}