深度學(xué)習(xí)筆記

Neural Networks and Deep Learning

This is my notebook when I learn deep learning from Neural Networks and Deep Learning

CHAPTER 1: Using neural nets to recognize handwritten digits

Two important types of artificial neuron (the perceptron and the sigmoid neuron), and the standard learning algorithm for neural networks, known as stochastic gradient descent.

Perceptrons

  1. A perceptron takes several binary inputs, x1,x2,..., and produces a single binary output

  2. data distribution
  3. A small change in the weights or bias of any single perceptron in the network can sometimes cause the output of that perceptron to completely flip. That makes it difficult to see how to gradually modify the weights and biases so that the network gets closer to the desired behaviour.

Sigmoid neuron

  1. Similar to perceptrons, but modified so that small changes in their weights and bias cause only a small change in their output.

  2. Sigmoid function,σ(w?x+b),so output is between 0~1

  3. Sigmoid is a smoothed out perceptron.

The architecture of neural networks

  • input layer, hidden layer, output layer

  • output from one layer is used as input to the next layer. Such networks are called feedforward neural networks

A simple network to classify handwritten digits

A three-layer neural network:


Learning with gradient descent

  • Denote the corresponding desired output by y=y(x), where y is a 10-dimensional vector. For example, if a particular training image, xx, depicts a 66, then y(x)=(0,0,0,0,0,0,1,0,0,0)T

  • cost funtion: C(w,b)≡1/2*n∑||y(x)?a||^2

w denotes the collection of all weights in the network, b all the biases, n is the total number of training inputs, a is the vector of outputs from the network when x is input

  • SGD: computing ?Cx for a small sample of randomly chosen training inputs

CHAPTER 2: How the backpropagation algorithm works


As matrix:


It illustrates how the activations in one layer relate to activations in the previous layer.

For backpropagation to work we need to make two main assumptions:

  1. The cost function can be written as an average over cost functions Cx for individual training examples, x.
  2. The cost function can be written as a function of the outputs from the neural network.

The Hadamard product, s⊙t

HADAMARD PRODUCT

Defenition of Z

Zl

The four fundamental equations behind backpropagation

error
  1. An equation for the error in the output layer

    matrix-based
  2. An equation for the error in terms of the error in the next layer

    By combining these two equations, we can compute the error for any layer in the network.
  3. An equation for the rate of change of the cost with respect to any bias in the network
    bias
  4. An equation for the rate of change of the cost with respect to any weight in the network
    weight

The backpropagation algorithm

backpropagation algorithm

Code

__author__ = 'Michael Nielsen '
# http://neuralnetworksanddeeplearning.com/chap1.html

import numpy as np
import random

def sigmoid(z):
    return 1.0/(1.0+np.exp(-z))

def sigmoid_prime(z):
    """Derivative of the sigmoid function."""
    return sigmoid(z)*(1-sigmoid(z))

class Network(object):

    def __init__(self, sizes):
        self.num_layers = len(sizes)
        self.sizes = sizes
        self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
        self.weights = [np.random.randn(y, x)
                        for x, y in zip(sizes[:-1], sizes[1:])]

    def feedforward(self, a):
        """Return the output of the network if "a" is input."""
        for b, w in zip(self.biases, self.weights):
            a = sigmoid(np.dot(w, a)+b)
        return a

    def SGD(self, training_data, epochs, mini_batch_size, eta,
            test_data=None):
        """Train the neural network using mini-batch stochastic
        gradient descent.  The "training_data" is a list of tuples
        "(x, y)" representing the training inputs and the desired
        outputs.  The other non-optional parameters are
        self-explanatory.  If "test_data" is provided then the
        network will be evaluated against the test data after each
        epoch, and partial progress printed out.  This is useful for
        tracking progress, but slows things down substantially."""
        if test_data: n_test = len(test_data)
        n = len(training_data)
        for j in range(epochs):
            random.shuffle(training_data)
            mini_batches = [training_data[k:k+mini_batch_size] for k in range(0, n, mini_batch_size)]
            for mini_batch in mini_batches:
                self.update_mini_batch(mini_batch, eta)
            if test_data:
                print ("Epoch {0}: {1} / {2}".format(j, self.evaluate(test_data), n_test))
            else:
                print ("Epoch {0} complete".format(j))

    def update_mini_batch(self, mini_batch, eta):
        """Update the network's weights and biases by applying
        gradient descent using backpropagation to a single mini batch.
        The "mini_batch" is a list of tuples "(x, y)", and "eta"
        is the learning rate."""
        nabla_b = [np.zeros(b.shape) for b in self.biases]
        nabla_w = [np.zeros(w.shape) for w in self.weights]
        for x, y in mini_batch:
            delta_nabla_b, delta_nabla_w = self.backprop(x, y)
            nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
            nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
        self.weights = [w-(eta/len(mini_batch))*nw
                        for w, nw in zip(self.weights, nabla_w)]
        self.biases = [b-(eta/len(mini_batch))*nb
                       for b, nb in zip(self.biases, nabla_b)]

    def backprop(self, x, y):
        """Return a tuple ``(nabla_b, nabla_w)`` representing the
        gradient for the cost function C_x.  ``nabla_b`` and
        ``nabla_w`` are layer-by-layer lists of numpy arrays, similar
        to ``self.biases`` and ``self.weights``."""
        nabla_b = [np.zeros(b.shape) for b in self.biases]
        nabla_w = [np.zeros(w.shape) for w in self.weights]
        # feedforward
        activation = x
        activations = [x] # list to store all the activations, layer by layer
        zs = [] # list to store all the z vectors, layer by layer
        for b, w in zip(self.biases, self.weights):
            z = np.dot(w, activation)+b
            zs.append(z)
            activation = sigmoid(z)
            activations.append(activation)
        # backward pass
        delta = self.cost_derivative(activations[-1], y) * \
            sigmoid_prime(zs[-1]) #the first error
        nabla_b[-1] = delta
        nabla_w[-1] = np.dot(delta, activations[-2].transpose())
        # Note that the variable l in the loop below is used a little
        # differently to the notation in Chapter 2 of the book.  Here,
        # l = 1 means the last layer of neurons, l = 2 is the
        # second-last layer, and so on.  It's a renumbering of the
        # scheme in the book, used here to take advantage of the fact
        # that Python can use negative indices in lists.
        for l in range(2, self.num_layers):
            z = zs[-l]
            sp = sigmoid_prime(z)
            delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
            nabla_b[-l] = delta
            nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())
        return (nabla_b, nabla_w)

    def evaluate(self, test_data):
        """Return the number of test inputs for which the neural
        network outputs the correct result. Note that the neural
        network's output is assumed to be the index of whichever
        neuron in the final layer has the highest activation."""
        test_results = [(np.argmax(self.feedforward(x)), y)
                        for (x, y) in test_data]
        return sum(int(x == y) for (x, y) in test_results)

    def cost_derivative(self, output_activations, y):
        """Return the vector of partial derivatives \partial C_x /
        \partial a for the output activations."""
        return (output_activations-y)

The implementation of stochastic gradient descent loops over training examples in a mini-batch. It's possible to modify the backpropagation algorithm so that it computes the gradients for all training examples in a mini-batch simultaneously by matrix.

CHAPTER 3: Improving the way neural networks learn

The cross-entropy cost function

Learning Slowdown

Using quadratic cost as cost function will lead to learning slowdown.



Cross-entropy Cost

cross-entropy
  • First, it's non-negative
  • Tends toward zero as the neuron gets better at computing the desired output
    Based on this cost function,


    gradient

    It's controlled by (a-y),which means if the error gets bigger, the faster the neuron will learn. Thus it avoids the learning slowdown.

Regularization

L2 regularization

L2 regularization

Dropout

dropout

When we dropout different sets of neurons, it's rather like we're training different neural networks. And so the dropout procedure is like averaging the effects of a very large number of different networks. The different networks will overfit in different ways, and so, hopefully, the net effect of dropout will be to reduce overfitting.

Weight initialization


Will not lead to learning down!

Handwriting recognition revisited: the code

network2.py

Other models of artificial neuron

tanh


That is tanh is just a rescaled version of the sigmoid function.

One difference between tanh neurons and sigmoid neurons is that the output from tanh neurons ranges from -1 to 1, not 0 to 1.

CHAPTER 4

A visual proof that neural nets can compute any function

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末唠亚,一起剝皮案震驚了整個(gè)濱河市宵膨,隨后出現(xiàn)的幾起案子粮呢,更是在濱河造成了極大的恐慌寞冯,老刑警劉巖,帶你破解...
    沈念sama閱讀 219,539評(píng)論 6 508
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件梭稚,死亡現(xiàn)場離奇詭異,居然都是意外死亡絮吵,警方通過查閱死者的電腦和手機(jī)弧烤,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 93,594評(píng)論 3 396
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來蹬敲,“玉大人暇昂,你說我怎么就攤上這事×黄埽” “怎么了话浇?”我有些...
    開封第一講書人閱讀 165,871評(píng)論 0 356
  • 文/不壞的土叔 我叫張陵,是天一觀的道長闹究。 經(jīng)常有香客問我幔崖,道長,這世上最難降的妖魔是什么渣淤? 我笑而不...
    開封第一講書人閱讀 58,963評(píng)論 1 295
  • 正文 為了忘掉前任赏寇,我火速辦了婚禮,結(jié)果婚禮上价认,老公的妹妹穿的比我還像新娘嗅定。我一直安慰自己,他們只是感情好用踩,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,984評(píng)論 6 393
  • 文/花漫 我一把揭開白布渠退。 她就那樣靜靜地躺著,像睡著了一般脐彩。 火紅的嫁衣襯著肌膚如雪碎乃。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 51,763評(píng)論 1 307
  • 那天惠奸,我揣著相機(jī)與錄音梅誓,去河邊找鬼。 笑死,一個(gè)胖子當(dāng)著我的面吹牛梗掰,可吹牛的內(nèi)容都是我干的嵌言。 我是一名探鬼主播,決...
    沈念sama閱讀 40,468評(píng)論 3 420
  • 文/蒼蘭香墨 我猛地睜開眼及穗,長吁一口氣:“原來是場噩夢(mèng)啊……” “哼摧茴!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起埂陆,我...
    開封第一講書人閱讀 39,357評(píng)論 0 276
  • 序言:老撾萬榮一對(duì)情侶失蹤蓬蝶,失蹤者是張志新(化名)和其女友劉穎,沒想到半個(gè)月后猜惋,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體丸氛,經(jīng)...
    沈念sama閱讀 45,850評(píng)論 1 317
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 38,002評(píng)論 3 338
  • 正文 我和宋清朗相戀三年著摔,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了缓窜。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 40,144評(píng)論 1 351
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡谍咆,死狀恐怖禾锤,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情摹察,我是刑警寧澤恩掷,帶...
    沈念sama閱讀 35,823評(píng)論 5 346
  • 正文 年R本政府宣布,位于F島的核電站供嚎,受9級(jí)特大地震影響黄娘,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜克滴,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,483評(píng)論 3 331
  • 文/蒙蒙 一逼争、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧劝赔,春花似錦誓焦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 32,026評(píng)論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至仍翰,卻和暖如春赫粥,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背歉备。 一陣腳步聲響...
    開封第一講書人閱讀 33,150評(píng)論 1 272
  • 我被黑心中介騙來泰國打工傅是, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留匪燕,地道東北人蕾羊。 一個(gè)月前我還...
    沈念sama閱讀 48,415評(píng)論 3 373
  • 正文 我出身青樓喧笔,卻偏偏與公主長得像,于是被迫代替她去往敵國和親龟再。 傳聞我的和親對(duì)象是個(gè)殘疾皇子书闸,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 45,092評(píng)論 2 355

推薦閱讀更多精彩內(nèi)容