18
1
7
22170
3
添加邊界框 錨框 目標(biāo)檢測(cè)算法通常會(huì)在輸入圖像中采樣大量的區(qū)域柑司,然后判斷這些區(qū)域中是否包含我們感興趣的目標(biāo),并調(diào)整區(qū)域邊緣從而更準(zhǔn)確地預(yù)測(cè)目標(biāo)的...
先說(shuō)說(shuō)數(shù)據(jù)增強(qiáng)大規(guī)模數(shù)據(jù)集是成功應(yīng)用深度神經(jīng)網(wǎng)絡(luò)的前提攒驰。圖像增廣(image augmentation)技術(shù)通過(guò)對(duì)訓(xùn)練圖像做一系列隨機(jī)改變,來(lái)產(chǎn)...
凸優(yōu)化 盡管優(yōu)化方法可以最小化深度學(xué)習(xí)中的損失函數(shù)值故爵,但本質(zhì)上優(yōu)化方法達(dá)到的目標(biāo)與深度學(xué)習(xí)的目標(biāo)并不相同玻粪。 優(yōu)化方法目標(biāo):訓(xùn)練集損失函數(shù)值 深度...
LetNet詳見(jiàn)上篇卷積神經(jīng)網(wǎng)絡(luò) LetNet存在缺陷: 在大的真實(shí)數(shù)據(jù)集上的表現(xiàn)并不盡如?意。 神經(jīng)網(wǎng)絡(luò)計(jì)算復(fù)雜诬垂。 還沒(méi)有?量深?研究參數(shù)初始...
本文主要介紹一些卷積層和池化層劲室,并解釋填充、步幅结窘、輸入通道和輸出通道的含義狞玛。以及LeNet的一些應(yīng)用 二維互相關(guān)運(yùn)算 二維互相關(guān)(cross-c...
循環(huán)神經(jīng)網(wǎng)絡(luò) 下圖展示了如何基于循環(huán)神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)語(yǔ)言模型操禀。我們的目的是基于當(dāng)前的輸入與過(guò)去的輸入序列娩贷,預(yù)測(cè)序列的下一個(gè)字符跋选。循環(huán)神經(jīng)網(wǎng)絡(luò)引入一個(gè)...
過(guò)擬合协怒、欠擬合及其解決方案 過(guò)擬合、欠擬合的概念 權(quán)重衰減 丟棄法 模型選擇卑笨、過(guò)擬合和欠擬合 訓(xùn)練誤差和泛化誤差 在解釋上述現(xiàn)象之前孕暇,我們需要區(qū)...