240 發(fā)簡(jiǎn)信
IP屬地:吉林
  • 博主好献联,我已經(jīng)成功訓(xùn)練了20萬(wàn)次沥邻,把object_detection更換成你發(fā)的最新的文件腔呜,然后運(yùn)行命令:python object_detection/export_inference_graph.py --input_type=image_tensor --pipeline_config_path=training/ssdlite_mobilenet_v2_coco.config --trained_checkpoint_prefix=training/model.ckpt-200000 --output_directory=ctree_inference_graph
    成功生成了ctree_inference_graph文件夾敬察,但是文件夾里面沒(méi)有任何文件,在cmd中的錯(cuò)誤提示為:
    tensorflow.python.framework.errors_impl.InvalidArgumentError: Assign requires shapes of both tensors to match. lhs shape= [256] rhs shape= [1280]
    [[{{node save/Assign_26}}]]

    tensorflow.python.framework.errors_impl.InvalidArgumentError: Assign requires shapes of both tensors to match. lhs shape= [256] rhs shape= [1280]
    [[node save/Assign_26 (defined at Y:\MobileNet-SSD\object_detection\exporter.py:241) ]]

    InvalidArgumentError (see above for traceback): Assign requires shapes of both tensors to match. lhs shape= [256] rhs shape= [1280]
    [[node save/Assign_26 (defined at Y:\MobileNet-SSD\object_detection\exporter.py:241) ]]

    tensorflow.python.framework.errors_impl.InvalidArgumentError: Restoring from checkpoint failed. This is most likely due to a mismatch between the current graph and the graph from the checkpoint. Please ensure that you have not altered the graph expected based on the checkpoint. Original error:

    Assign requires shapes of both tensors to match. lhs shape= [256] rhs shape= [1280]
    [[node save/Assign_26 (defined at Y:\MobileNet-SSD\object_detection\exporter.py:241) ]]

    InvalidArgumentError (see above for traceback): Restoring from checkpoint failed. This is most likely due to a mismatch between the current graph and the graph from the checkpoint. Please ensure that you have not altered the graph expected based on the checkpoint. Original error:

    Assign requires shapes of both tensors to match. lhs shape= [256] rhs shape= [1280]
    [[node save/Assign_26 (defined at Y:\MobileNet-SSD\object_detection\exporter.py:241) ]]
    看上去是結(jié)構(gòu)不一樣無(wú)法保存,請(qǐng)求博主幫助!

    目標(biāo)檢測(cè)實(shí)踐_tensorflow版SSD模型測(cè)試

    致謝聲明 本文在學(xué)習(xí)《Tensorflow object detection API 搭建屬于自己的物體識(shí)別模型(2)——訓(xùn)練并使用自己的模型》的基礎(chǔ)上優(yōu)化并總結(jié)迂求,此博客鏈接...

  • Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.735
    Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.971
    Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.896
    Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
    Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.590
    Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.747
    Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.142
    Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.768
    Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.798
    Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
    Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.677
    Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.809

    博主你好碾盐,這是我訓(xùn)練出來(lái)的結(jié)果晃跺。請(qǐng)問(wèn)里面的六個(gè)精確率和召回率中area=all、small毫玖、medium掀虎、large,maxDets=100付枫、10烹玉、1分別表示什么意思?IoU=0.50:0.95是指IoU在0.50到0.95之間吧阐滩?IoU=0.50是指IoU剛好在0.50時(shí)嗎二打?我想應(yīng)該是指IoU大于等于0.50吧。最后的結(jié)果=-1表示什么意思掂榔?

    目標(biāo)檢測(cè)實(shí)踐_tensorflow版SSD訓(xùn)練自己的數(shù)據(jù)

    致謝聲明 本文在學(xué)習(xí)《Tensorflow object detection API 搭建屬于自己的物體識(shí)別模型(2)——訓(xùn)練并使用自己的模型》的基礎(chǔ)上優(yōu)化并總結(jié)继效,此博客鏈接...

亚洲A日韩AV无卡,小受高潮白浆痉挛av免费观看,成人AV无码久久久久不卡网站,国产AV日韩精品