從粗到細(xì) 實(shí)踐中矾利,一般先進(jìn)行初步范圍搜索庇茫,然后根據(jù)好結(jié)果出現(xiàn)的地方疙筹,再縮小范圍進(jìn)行更精細(xì)的搜索沛硅。 先參考相關(guān)論文,以論文中給出的參數(shù)作為初始參數(shù)摄狱。 如果找不到參考脓诡,那么只能自...

從粗到細(xì) 實(shí)踐中矾利,一般先進(jìn)行初步范圍搜索庇茫,然后根據(jù)好結(jié)果出現(xiàn)的地方疙筹,再縮小范圍進(jìn)行更精細(xì)的搜索沛硅。 先參考相關(guān)論文,以論文中給出的參數(shù)作為初始參數(shù)摄狱。 如果找不到參考脓诡,那么只能自...
所謂“知識精煉”我的理解就是將一個訓(xùn)練好的復(fù)雜模型的“知識”遷移到一個結(jié)構(gòu)更為簡單的網(wǎng)絡(luò)中,或者通過簡單的網(wǎng)絡(luò)去學(xué)習(xí)復(fù)雜模型中“知識”或模仿復(fù)雜模型的行為媒役。當(dāng)然“知識”的定義...
網(wǎng)絡(luò)量化作為一種重要的模型壓縮方法祝谚,大致可以分為兩類: 直接降低參數(shù)精度典型的工作包括二值網(wǎng)絡(luò),三值網(wǎng)絡(luò)以及XNOR-Net. HORQ和Network Sketching相...
Approach We propose a simple two-step approach for speeding up convolution layers withi...
Approach Matrix Decomposition Higher Order Tensor Approximations Monochromatic Convolut...
Approach Han song recently propose to compress DNN by deleting unimportant parameters a...
Approach Experiment References:Speeding up Convolutional Neural Networks with Low Rank ...
Approach The optimization target of learning the filter-wise and channel-wise structure...
Approach Fixed-point Factorization Full-precision Weights Recovery The quantized weight...
Approach Firstly, we introduce an efficient test-phase computation process with the net...
Approach Approximating the Filters Speeding-up the Sketch Model Experiment References:N...
Approach We present INQ which incorporates three interdependent operations: weight part...
Approach where p(w) is the prior over w and p(D|w) is the model likelihood. After re-tr...
Approach We introduce “deep compression”, a three stage pipeline: pruning, trained quan...
一直以來酣衷,網(wǎng)絡(luò)剪枝都是模型壓縮中的重要方法交惯。按照被剪對象的粒度來分,大致可以分為三類: 針對權(quán)重剪枝穿仪,最具代表性的工作是韓松發(fā)表在NIP'15上的文章 “Learning b...
Approach Han song recently propose to compress DNN by deleting unimportant parameters a...
Approach The proposed scheme for pruning consists of the following steps: Fine-tune the...