無標題文章

Stationarity, cointegration and GARCH model of financialtime series


[if !supportLists]1.????[endif]Introduction:


Security dailyreturns is hard to be predicted, but the study of returns has been across thetime series exploration. This paper examines ARMA model, which was firstlydescribed in 1951 (Peter Whittle, Hypothesis testing in time series analysis) (Wikipedia,2020) [1] and GARCH model family on daily returns of FTSE100 index. Section 2 describesthe data and variables to be estimated by the time series models. Section 3 summarizesoutput statistics of the models. Section 4 discusses a conclusion.



[if !supportLists]2.????[endif]Inputdata and variables description

The research oftime series models will be based on two datasets. The first data is FSTE100index historical daily returns and 5-min realized variance from 2000-01-04 to 2017-12-29,which was provided on Moodle. The second one is the crude oil spot and future dailyreturns from 2017-12-11 to 2020-11-30. The crude oil spot price data isavailable on EIA (energy information administration) websites [2] and thefuture prices are downloaded from yahoo-finance with the ticker of “CL=F”,which is the Crude Oil Jan.2021 future contracts.


Firstly, we will discussabout the notion of stationarity. A stochastic process[if !vml]

[endif]

is stationary if forany fixed[if !vml]

[endif]doesnot change as a function of[if !vml]

[endif]. In particular, moments and jointmoments are?constant. (Alex, 2020) [3] To be more specific, somestatistical properties of a time series should not change with time. Generalexamples of the properties include the mean E(xt), variance Var(xt) and covariance Cov(xt, xt+k)which should be constant. On the other hand,non-stationary time series indicates the mean, variance or covariance changeswith time.


In practice,there are several methods to examine if a time series is stationary. One of themost popular methods is the Dickey-Fuller test, which is named after thestatisticians David Dickey and Wayne Fuller, who developed the test in 1979. (Wikipedia,2020)[4] The table below shows the Dickey-Fuller test of FTSE100 returns. Based onthe fact that the p-value of 3.39E-22 is significantly smaller than all threelevels (%1, 5%,10%) critical values, the returns is stationary.


ADF-test for FTSE100 returnvalue

Test Statistic Value-11.9986

p-value3.39E-22

Lags Used32

Number of Observations Used4504

Critical Value (1%)-3.4318

Critical Value (5%)-2.86218

Critical Value (10%)-2.56711

Table 1: ADF testof FTSE100 returns

The table belowshows the ADF test for Crude Oil price returns. Since the test statisticalvalue is smaller than the critical values and the p-value is significantlysmall, the returns of the future and spot price are also stationary.


ADF-test for crude oil pricefuture pricespot price

Test Statistic Value-9.48642-8.50151

p-value3.75E-161.23E-13

Lags Used1013

Number of Observations Used726723

Critical Value (1%)-3.43939-3.43943

Critical Value (5%)-2.86553-2.86555

Critical Value (10%)-2.56889-2.5689

Table 2: ADF testof oil splot and future prices


Besides thestationarity, another important feature of time series which is commonly testedis cointegration. Cointegration?is a?statistical?property of acollection?(X1,?X2,?...,?Xk)?of?timeseries?variables. If all of the series are integrated of order d?.anda?linear combination?of this collection is integrated of order lessthan d, then the collection is said to be co-integrated. Formally, if (X, Y,

Z) are each integrated of order?d, and there existcoefficients?a,b,c?such that?aX+?bY?+?cZisintegrated of order less than d, thenX,?Y, andZarecointegrated. (Wikipedia, 2020)?[5] A cointegration test is used toestablish if there is a correlation between severaltime seriesinthe long term. The concept was first introduced by Nobel laureates Robert Engleand Clive Granger, in 1987, after British economist Paul Newbold and Grangerpublished the spurious regression concept. One of the most important testmethods is the Engle-Granger approach. The test includes two steps starting bycreating residuals based on the static regression and then testing theresiduals for the presence of unit roots. It uses the Augmented Dickey-FullerTest (ADF) or other tests to test for stationarity units in time series. If thetime series is cointegrated, the Engle-Granger method will show thestationarity of the residuals. (CFI, 2020) [6]


[if !supportLists]3.????[endif]Modeloutput statistics


The first modelwe try to fit the FTSE100 dataset is ARMA (p, q) model:?

[if !vml]

[endif]

Where: φ = the autoregressive modelparameters; θ = the moving average model parameters; c = a constant; ε = errorterms (white noise) (Stephanie,2020) [7]


One of the directmethods to determine the p and q parameters is to look at the ACF and PACFplot. As the table1 in Appendix, the ACF and PACF values are both notsignificant from one la, indicating that the returns are not significantlycorrelated with the historical previous data. Therefore, we will try the ARMA (1,1)model. The table3 below shows the ARMA results.


ARIMA Model Results

Dep. Variable:???????????????? Return?? No. Observations:???????????????? 4037

Model:???????????????????? ARMA(1, 1)?? Log Likelihood?????????????? 12170.071

Method:?????????????????????? css-mle?? S.D. of innovations????????????? 0.012

Date:??????????????? Wed, 16 Dec 2020?? AIC???????????????? ????????-24332.142

Time:??????????????????????? 21:04:36?? BIC???????????????????????? -24306.929

Sample:???????????????????????????? 0?? HQIC??????????????????????? -24323.209

================================================================================

?????????????????? coef??? std err????????? z????? P>|z|????? [0.025????? 0.975]

--------------------------------------------------------------------------------

const?????????? -0.0001????? 0.000???? -0.942????? 0.346????? -0.000?????? 0.000

ar.L1.Return???? 0.6660????? 0.089????? 7.498????? 0.000?????? 0.492?????? 0.840

ma.L1.Return??? -0.7296????? 0.081???? -8.968????? 0.000????? -0.889????? -0.570

Roots

????????????????? Real????????? Imaginary?????????? Modulus???????? Frequency

AR.1? ??????????1.5016?????????? +0.0000j??????????? 1.5016??????????? 0.0000

MA.1??????????? 1.3706?????????? +0.0000j??????????? 1.3706??????????? 0.0000

Table3: result of ARIMA (1,1) model of FTSE 100 returns


The ARMA model

performs not well for the high AIC, BIC, and HQIC values.


Next, to forecastthe daily volatility, we will try three models: GARCH, GJR, and


[if !supportLists](i)????????????[endif]GARCH

For the threeGARCH family models, we will try to use other parameters to improve the modelperformance. As Table2 and Graph1&2 shows, the PACF and ACF for squaredreturns are much different from the original returns. We would choose p=5 andq=5.


The table 4 belowshows the GARCH(5,5)




Constant Mean - GARCH Model? Results

Dep. Variable:???????????????? Return?? R-squared:????????????????????? -0.001

Mean Model:???????????? Constant Mean?? Adj. R-squared:???????????????? -0.001

Vol Model:????????????????????? GARCH?? Log-Likelihood:??????????????? 12963.5

Distribution:????????????????? Normal?? AIC:?????????? ???????????????-25903.1

Method:??????????? Maximum Likelihood?? BIC:????????????????????????? -25827.5

??????????????????????????????????????? No.? Observations:???????????????? 4032

Date:??????????????? Thu, Dec 17 2020?? Df Residuals:????????????????? ???4020

Time:??????????????????????? 20:49:21?? Df Model:?????????????????????????? 12

Mean Model

?????????????? ??coef???

? std err????????? t????? P>|t|?????? 95.0% Conf. Int.

mu???????? 2.1783e-04? 1.570e-04????? 1.387????? 0.165 [-8.992e-05,5.256e-04]

Volatility Model

???????????????? coef??? std err????????? t????? P>|t|????? 95.0% Conf. Int.

omega????? 2.8366e-06? 2.907e-11?

? 9.758e+04????? 0.000? [2.837e-06,2.837e-06]

alpha[1]?????? 0.0400?

? 5.661e-02????? 0.707????? 0.480?

? [-7.095e-02,? 0.151]

alpha[2]?????? 0.0400?

? 7.307e-02????? 0.547????? 0.584???? [ -0.103,? 0.183]

alpha[3]?????? 0.0400?

? 1.816e-02????? 2.202? 2.765e-02 [4.399e-03,7.560e-02]

alpha[4]?????? 0.0400?

? 6.250e-02????? 0.640????? 0.522?

? [-8.250e-02,? 0.162]

alpha[5]?????? 0.0400?

? 6.308e-02????? 0.634????? 0.526?

? [-8.363e-02,? 0.164]

beta[1]??????? 0.1560????? 1.924?

? 8.107e-02????? 0.935???? [ -3.615,? 3.927]

beta[2]??????? 0.1560????? 2.338?

? 6.674e-02????? 0.947???? [ -4.426,? 4.738]

beta[3]????? ??0.1560?????

? 0.415????? 0.376????? 0.707???? [ -0.658,? 0.970]

beta[4]??????? 0.1560????? 1.390????? 0.112????? 0.911???? [ -2.568,? 2.880]

beta[5]??????? 0.1560????? 1.190????? 0.131????? 0.896???? [ -2.176,? 2.488]


Table4: result of GARCH(5,5) model of FTSE 100 returns


According to the result, the GARCH Model is:

?t=σt*ut

σt2 = 2.8366*10

?6 + 0.04 ?t+ 0.156* (σt

– i)2


With the GARCHmodel, the Graph3 shows the predicted volatility, and the Table 4 shows thepredicted volatility errors. The model performs not well.










(ii) GJR

The volatilitydynamics in a GJR-GARCH model are given by

[if !vml]

[endif](Kevin, 2019) [8]

The table belowshows the result of the model statistics.?


Constant Mean - GJR-GARCH Model Results

Dep. Variable:???????????????? Return?? R-squared:????????????????????? -0.000

Mean Model:???????????? Constant Mean?? Adj. R-squared:???????????????? -0.000

Vol Model:????????????????? GJR-GARCH?? Log-Likelihood:??????????????? 13032.9

Distribution:??????? ??????????Normal?? AIC:????????????????????????? -26039.9

Method:??????????? Maximum Likelihood?? BIC:????????????????????????? -25957.9

??????????????????????????????????????? No.? Observations:???????????????? 4032

Date:??????????????? Thu, Dec 17 2020?? Df Residuals:???????????????????? 4019

Time:??????????????????????? 21:29:53?? Df Model:?????????????????????????? 13

Mean Model

????????????????? coef??? std err????????? t????? P>|t|??????? 95.0% Conf. Int.

mu???????? -5.8570e-05? 6.666e-06???? -8.786?

? 1.552e-18 [-7.164e-05,-4.550e-05]

Volatility Model

???????????????? coef??? std err????????? t????? P>|t|?????? 95.0% Conf. Int.

omega????? 2.8365e-06? 3.189e-12?

? 8.896e+05????? 0.000? [2.837e-06,2.837e-06]

alpha[1]?????? 0.0200?

? 6.722e-02????? 0.298????? 0.766????? [ -0.112,? 0.152]

alpha[2]?????? 0.0200?

? 3.521e-02????? 0.568????? 0.570 [-4.900e-02,8.900e-02]

alpha[3]?????? 0.0200?

? 3.674e-02????? 0.544????? 0.586 [-5.202e-02,9.202e-02]

alpha[4]?????? 0.0200?

? 4.537e-02????? 0.441????? 0.659??

? [-6.893e-02,? 0.109]

alpha[5]?????? 0.0200?

? 5.392e-02????? 0.371????? 0.711??

? [-8.569e-02,? 0.126]

gamma[1]?????? 0.2000?

? 5.196e-02????? 3.849? 1.185e-04???

? [9.816e-02,? 0.302]

beta[1]??????? 0.1560????? 0.195????? 0.801????? 0.423??

? ???[ -0.226,? 0.538]

beta[2]??????? 0.1560????? 0.195????? 0.801????? 0.423????? [ -0.226,? 0.538]

beta[3]??????? 0.1560????? 0.328????? 0.476????? 0.634????? [ -0.486,? 0.798]

beta[4]??????? 0.1560????? 0.354????? 0.441????? 0.659????? [ -0.538,? 0.850]

beta[5]??????? 0.1560????? 0.476????? 0.328????? 0.743????? [ -0.777,? 1.089]

Table5: result of GJR(5,1,5) model of FTSE 100 returns


The graph4 showsthe predicted volatility errors of GJR model. The predictions perform mediocre.



(iii) EGARCH:

The third modelwe test is the EGARCH model. The graph below shows the predicted volatility ofEGARCH model. Table 6 below shows the model summary of EGARCH.

Constant Mean - EGARCH Model Results

Dep. Variable:???????????????? Return?? R-squared:??????????????????? ???-0.001

Mean Model:???????????? Constant Mean?? Adj. R-squared:???????????????? -0.001

Vol Model:?????????????????? EGARCH?? Log-Likelihood:??????????????? 12990.8

Distribution:????????????????? Normal?? ?AIC:???????????????????????? -25957.6

Method:??????????? Maximum Likelihood?? BIC:??????????????????????? -25882.0

??????????????????????????????????????? No.? Observations:?????????????? 4032

Date:??????????????? Thu, Dec 17 2020?? Df Residuals:???????????????????? 4020

Time:??????????????????????? 21:41:05?? Df Model:???????????????????????? 12

Mean Model

??????? ?????????coef???

? std err????????? t????? P>|t|?????? 95.0% Conf. Int.

mu???????? 2.4847e-04? 1.299e-04????? 1.912?

? 5.587e-02 [-6.226e-06,5.032e-04]

Volatility Model

???????????????? coef??? std err????????? t????? P>|t|???? 95.0% Conf. Int.

omega???? ????-0.5769????? 0.247???? -2.340?

? 1.927e-02 [ -1.060,-9.376e-02]

alpha[1]?????? 0.2074?

? 4.113e-02????? 5.041? 4.632e-07???

? [? 0.127,? 0.288]

alpha[2]?????? 0.2340?

? 9.985e-02????? 2.343? 1.911e-02?

? [3.828e-02,? 0.430]

alpha[3]?????? 0.3065?

? 7.969e-02?? ???3.846?

? 1.200e-04??? [? 0.150,?

? 0.463]

alpha[4]?????? 0.0726????? 0.101????? 0.722????? 0.470???

? [ -0.124,? 0.270]

alpha[5]?????? 0.0930?

? 8.504e-02????? 1.094????? 0.274 [-7.364e-02,? 0.260]

beta[1]??? 3.0627e-14????? 0.307?

? 9.964e-14????? 1.000??? [ -0.602,?

? 0.602]

beta[2]??????? 0.0000????? 0.184????? 0.000????? 1.000???

? [ -0.361,? 0.361]

beta[3]??????? 0.3623????? 0.348????? 1.042????? 0.297???

? [ -0.319,? 1.044]

beta[4]??? 1.1093e-13????? 0.370?

? 3.002e-13????? 1.000??? [ -0.724,?

? 0.724]

beta[5]??????? 0.5733????? 0.405????? 1.414????? 0.157???

? [ -0.221,? 1.368]

Table6: result of EGARCH(5,5) model of FTSE 100 returns


To estimate themodel performance, we use three metrics: MSE, MAE and MAPE. Where the MSE isthe mean squared error, MAE is the mean error, and MAPE is the mean absoluteerror.


GARCHGJREGARCH

MSE8.349e-080.0001098.32e-05

MAE0.008630.010450.00865

MAPE256964.48305868251324.53


[if !supportLists]4.????[endif]Conclusion:

Based on theoutput statistics, we can see that the three metrics of the predictedvolatility of GARCH model is smaller than the other two models and the metricsof the GJR is biggest. Hence, we can conclude that the GARCH model performsbest and the GJR model performs worst.






Citation:


[1]Autoregressive–moving-average model. (2020, December 02). Retrieved December

09, 2020, from https://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model

[2](n.d.). Retrieved December

10, 2020, from https://www.eia.gov/dnav/pet/hist/RWTCD.htm

[3] Alex, A. (2020, May 20). Stationarity

and Non-stationary Time Series with Applications in R. Retrieved December 09,

2020, from https://boostedml.com/2020/05/stationarity-and-non-stationary-time-series-with-applications-in-r.html

[4] Dickey–Fuller test. (2020, December

01). Retrieved December 10, 2020, from https://en.wikipedia.org/wiki/Dickey%E2%80%93Fuller_test

[5] Cointegration. (2020, December 05).

Retrieved December 10, 2020, from https://en.wikipedia.org/wiki/Cointegration

[6] Cointegration - Overview, History,

Methods of Testing. (2020, May 01). Retrieved December 10, 2020, from https://corporatefinanceinstitute.com/resources/knowledge/other/cointegration/

[7] Stephanie. (2020, June 08). ARMA

model. Retrieved December 10, 2020, from https://www.statisticshowto.com/arma-model/

[8] Kevin Sheppard. (2019, September 04).

Example: GJR-GARCH Estimation. Retrieved December 10, 2020, from https://www.kevinsheppard.com/teaching/python/notes/notebooks/example-gjr-garch/

?著作權歸作者所有,轉載或內容合作請聯(lián)系作者
  • 序言:七十年代末透乾,一起剝皮案震驚了整個濱河市荐吵,隨后出現(xiàn)的幾起案子督怜,更是在濱河造成了極大的恐慌吃衅,老刑警劉巖,帶你破解...
    沈念sama閱讀 219,490評論 6 508
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異,居然都是意外死亡梧疲,警方通過查閱死者的電腦和手機,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 93,581評論 3 395
  • 文/潘曉璐 我一進店門运准,熙熙樓的掌柜王于貴愁眉苦臉地迎上來幌氮,“玉大人,你說我怎么就攤上這事胁澳「没ィ” “怎么了?”我有些...
    開封第一講書人閱讀 165,830評論 0 356
  • 文/不壞的土叔 我叫張陵韭畸,是天一觀的道長慢洋。 經常有香客問我塘雳,道長,這世上最難降的妖魔是什么普筹? 我笑而不...
    開封第一講書人閱讀 58,957評論 1 295
  • 正文 為了忘掉前任败明,我火速辦了婚禮,結果婚禮上太防,老公的妹妹穿的比我還像新娘妻顶。我一直安慰自己,他們只是感情好蜒车,可當我...
    茶點故事閱讀 67,974評論 6 393
  • 文/花漫 我一把揭開白布讳嘱。 她就那樣靜靜地躺著,像睡著了一般酿愧。 火紅的嫁衣襯著肌膚如雪沥潭。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 51,754評論 1 307
  • 那天嬉挡,我揣著相機與錄音钝鸽,去河邊找鬼。 笑死庞钢,一個胖子當著我的面吹牛拔恰,可吹牛的內容都是我干的。 我是一名探鬼主播基括,決...
    沈念sama閱讀 40,464評論 3 420
  • 文/蒼蘭香墨 我猛地睜開眼颜懊,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了风皿?” 一聲冷哼從身側響起河爹,我...
    開封第一講書人閱讀 39,357評論 0 276
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎桐款,沒想到半個月后昌抠,有當?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經...
    沈念sama閱讀 45,847評論 1 317
  • 正文 獨居荒郊野嶺守林人離奇死亡鲁僚,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 37,995評論 3 338
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了裁厅。 大學時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片冰沙。...
    茶點故事閱讀 40,137評論 1 351
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖执虹,靈堂內的尸體忽然破棺而出拓挥,到底是詐尸還是另有隱情,我是刑警寧澤袋励,帶...
    沈念sama閱讀 35,819評論 5 346
  • 正文 年R本政府宣布侥啤,位于F島的核電站当叭,受9級特大地震影響,放射性物質發(fā)生泄漏盖灸。R本人自食惡果不足惜蚁鳖,卻給世界環(huán)境...
    茶點故事閱讀 41,482評論 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望赁炎。 院中可真熱鬧醉箕,春花似錦、人聲如沸徙垫。這莊子的主人今日做“春日...
    開封第一講書人閱讀 32,023評論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽姻报。三九已至己英,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間吴旋,已是汗流浹背损肛。 一陣腳步聲響...
    開封第一講書人閱讀 33,149評論 1 272
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留邮府,地道東北人荧关。 一個月前我還...
    沈念sama閱讀 48,409評論 3 373
  • 正文 我出身青樓,卻偏偏與公主長得像褂傀,于是被迫代替她去往敵國和親忍啤。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 45,086評論 2 355

推薦閱讀更多精彩內容

  • 目錄 [TOC] 引言 量化交易是指以先進的數(shù)學模型替代人為的主觀判斷仙辟,利用計算機技術從龐大的歷史數(shù)據(jù)中海選能帶來...
    雷達熊閱讀 983評論 0 2
  • Effective TensorFlow Table of Contents TensorFlow Basics ...
    法布雷加嘻閱讀 547評論 0 1
  • # 11The impact of regulations on the supply and quality o...
    Ordinary閱讀 343評論 0 1
  • Exercise 10-Precession of the Perihelion of Mercury (4.10...
    大喬治閱讀 256評論 0 0
  • 久違的晴天同波,家長會。 家長大會開好到教室時叠国,離放學已經沒多少時間了未檩。班主任說已經安排了三個家長分享經驗。 放學鈴聲...
    飄雪兒5閱讀 7,523評論 16 22