如果你很好地理解了這兩個(gè)概念节值,一半的問(wèn)題都解決了,決策的依據(jù)是什么榜聂?就是judgment搞疗,這個(gè)是叫判決,我把它譯成判決须肆。就是說(shuō)任何一個(gè)定義匿乃,或者是任何一個(gè)概念,或者一個(gè)術(shù)語(yǔ)它四個(gè)方面你要去解決豌汇。
任何一個(gè)概念或定義幢炸,從邏輯的角度來(lái),它必須要思考四個(gè)方面拒贱,也即宛徊,它的內(nèi)涵,外延柜思,歧義岩调,以及它的含糊度。
什么叫一詞多義赡盘?
比如說(shuō)我們現(xiàn)在說(shuō)的架構(gòu)(Architect (架構(gòu)師) 名詞/Architecting(構(gòu)架) 動(dòng)詞/Architecture(架構(gòu)号枕,體系結(jié)構(gòu)) 名詞),你可以說(shuō)成它是一個(gè)工作產(chǎn)品(Work Item)陨享,那么你是把它當(dāng)成一個(gè)名詞葱淳,還是把它當(dāng)成一個(gè)動(dòng)作呢?當(dāng)我們說(shuō)軟件設(shè)計(jì)的時(shí)候抛姑,你是把它當(dāng)成一個(gè)名詞赞厕,還是把它當(dāng)成一個(gè)活動(dòng)的動(dòng)作?
其實(shí)定硝,兩個(gè)部分都包括皿桑,一個(gè)軟件設(shè)計(jì)是一個(gè)工作產(chǎn)品,然后還有是干活的動(dòng)作蔬啡。軟件架構(gòu)它也是一詞多義诲侮,因?yàn)榧軜?gòu)可以是一種設(shè)計(jì),所以說(shuō)軟件架構(gòu)在很多情況下箱蟆,會(huì)把它當(dāng)成是一個(gè)工作產(chǎn)品沟绪,但是也有可能把架構(gòu)當(dāng)成一個(gè)活動(dòng)去看待,就是說(shuō)它是活動(dòng)的空猜。
那我們的架構(gòu)绽慈,定義的是靜態(tài)的概念恨旱,還是活動(dòng)的概念?
其實(shí)坝疼,都定義了搜贤,至少會(huì)有兩個(gè)含義,一個(gè)當(dāng)成工作產(chǎn)品裙士,一個(gè)當(dāng)成活動(dòng)入客,這就是一詞多義,我們不能孤立的只強(qiáng)調(diào)多義中的一義腿椎,這樣就是以偏概全了桌硫。
如果架構(gòu)是當(dāng)成動(dòng)詞,活動(dòng)的時(shí)候啃炸,這個(gè)時(shí)候架構(gòu)對(duì)應(yīng)的是Architecting铆隘,把它當(dāng)活動(dòng)這個(gè)意思摘出去了。然后它作為一個(gè)工作產(chǎn)品時(shí)候的意思南用,對(duì)應(yīng)的是Architecture膀钠。
理解完這個(gè)概念之后,我們開(kāi)始來(lái)理解概念的內(nèi)涵和外延裹虫。
什么叫做一個(gè)概念的內(nèi)涵肿嘲?
In logic and mathematics, an intensional definition gives the meaning of a term by specifying necessary and sufficient conditions for when the term should be used. In the case of nouns, this is equivalent to specifying the properties that an object needs to have in order to be counted as a referent of the term.
在邏輯和數(shù)學(xué)中,內(nèi)涵定義通過(guò)為應(yīng)該使用該術(shù)語(yǔ)的時(shí)間指定必要和充分的條件來(lái)給出術(shù)語(yǔ)的含義筑公。 就名詞而言雳窟,這相當(dāng)于指定對(duì)象需要具有的屬性,以便作為該術(shù)語(yǔ)的參考匣屡。
For example, an intensional definition of the word "bachelor" is "unmarried man". This definition is valid because being an unmarried man is both a necessary condition and a sufficient condition for being a bachelor: it is necessary because one cannot be a bachelor without being an unmarried man, and it is sufficient because any unmarried man is a bachelor.
例如封救,“單身漢”一詞的內(nèi)涵定義是“未婚男子”。 這個(gè)定義是有道理的捣作,因?yàn)槲椿槟凶蛹仁且粋€(gè)單身漢的必要條件誉结,也是一個(gè)充分條件,這是必要的券躁,因?yàn)椴荒艹蔀橐粋€(gè)單身漢惩坑,而不是一個(gè)未婚男子,因?yàn)槿魏挝椿槟凶邮菃紊頋h就足夠了也拜。
This is the opposite approach to the extensional definition, which defines by listing everything that falls under that definition – an extensional definition of bachelor would be a listing of all the unmarried men in the world.
這是與外延定義相反的方法旭贬,通過(guò)列出所有屬于該定義的定義來(lái)定義 - 單身漢的外延定義將是世界上所有未婚男子的列表。
As becomes clear, intensional definitions are best used when something has a clearly defined set of properties, and they work well for terms that have too many referents to list in an extensional definition. It is impossible to give an extensional definition for a term with an infinite set of referents, but an intensional one can often be stated concisely – there are infinitely many even numbers, impossible to list, but the term "even numbers" can be defined easily by saying that even numbers are integer multiples of two.
顯而易見(jiàn)搪泳,內(nèi)涵定義最好在某些具有明確定義的屬性的情況下使用,并且對(duì)于在擴(kuò)展定義中列出的參照太多的術(shù)語(yǔ)來(lái)說(shuō)扼脐,它們工作得很好岸军。 對(duì)一個(gè)有無(wú)限指稱的術(shù)語(yǔ)給出一個(gè)擴(kuò)展定義是不可能的奋刽,但是一個(gè)內(nèi)涵通常可以簡(jiǎn)明扼要地說(shuō)明 - 有無(wú)限多的偶數(shù)艰赞,不可能列出佣谐,但是可以容易地定義術(shù)語(yǔ)“偶數(shù)” 通過(guò)說(shuō)偶數(shù)是兩個(gè)整數(shù)倍。
Definition by genus and difference, in which something is defined by first stating the broad category it belongs to and then distinguished by specific properties, is a type of intensional definition. As the name might suggest, this is the type of definition used in Linnaean taxonomy to categorize living things, but is by no means restricted to biology. Suppose one defines a miniskirt as "a skirt with a hemline above the knee". It has been assigned to a genus, or larger class of items: it is a type of skirt. Then, we've described the differentia, the specific properties that make it its own sub-type: it has a hemline above the knee.