數(shù)量生態(tài)學(xué)筆記||非約束排序||PCoA

主坐標(biāo)分析(Principal Coordinates Analysis ,PCoA, =Classical Multidimensional Scaling ,cMDScale)是一種探索和可視化數(shù)據(jù)相似或不同之處的方法妄田。它從一個(gè)相似矩陣或相異矩陣(=距離矩陣)開(kāi)始航攒,并在一個(gè)低維度空間中為每個(gè)對(duì)象分配一個(gè)位置厨剪。

PCoA能夠?qū)颖局g的相似性距離(虛擬距離),經(jīng)過(guò)投影后,在低維度空間進(jìn)行距離展示螃宙,以最大限度地保留原始樣本的距離關(guān)系测摔,使相似的樣本在圖形中的距離更為接近置济,相異的樣本距離更遠(yuǎn)。因此相比于PCA锋八,PCoA以樣本距離為整體考慮浙于,更符合生態(tài)學(xué)數(shù)據(jù)特征,應(yīng)用也更為廣泛挟纱。

PCoA是一種多維標(biāo)度方法羞酗,是一個(gè)探索性的過(guò)程方法,其目的主要是:

  • 減少(觀察)項(xiàng)目
  • 如果可能紊服,在數(shù)據(jù)中揭示現(xiàn)有結(jié)構(gòu)
  • 揭示相關(guān)特征
  • 尋找盡可能低維度的空間(“最小化條件”)
  • 空間必須滿足“單調(diào)條件”
  • 解釋空間的軸檀轨,依照假設(shè)提供關(guān)于感知和評(píng)判過(guò)程的信息
# 導(dǎo)入本章所需的程序包 
library(ade4)
library(vegan)
library(gclus)  
library(ape)
rm(list = ls())
setwd("D:\\Users\\Administrator\\Desktop\\RStudio\\數(shù)量生態(tài)學(xué)\\DATA")
# 導(dǎo)入CSV文件數(shù)據(jù) 
spe <- read.csv("DoubsSpe.csv", row.names=1)
env <- read.csv("DoubsEnv.csv", row.names=1)
spa <- read.csv("DoubsSpa.csv", row.names=1)
# 刪除沒(méi)有數(shù)據(jù)的樣方8
spe <- spe[-8,]
env <- env[-8,]
spa <- spa[-8,]
利用cmdscale 包和vegan包多Doubs數(shù)據(jù)進(jìn)行PCoA分析

利用wascores()函數(shù)可以以多度加權(quán)平均方式將物種被動(dòng)投影到樣方的PCoA的排序圖中。

在非約束排序中被動(dòng)加入物種欺嗤,如何解釋呢参萄?也同PCA嗎?以及后面的約束排序有何區(qū)別煎饼?

 基于魚(yú)類(lèi)物種數(shù)據(jù)Bray-Curtis相異矩陣的PCoA分析
# *********************************************
spe.bray <- vegdist(spe)
spe.b.pcoa <- cmdscale(spe.bray, k=(nrow(spe)-1), eig=TRUE)
# 繪制樣方主坐標(biāo)排序圖并用加權(quán)平均方法將物種投影到樣方PCoA排序圖
ordiplot(scores(spe.b.pcoa)[,c(1,2)], type="t", main="PCoA分析(帶物種投影)") 
abline(h=0, lty=3)
abline(v=0, lty=3)
# 添加物種
spe.wa <- wascores(spe.b.pcoa$points[,1:2], spe)
text(spe.wa, rownames(spe.wa), cex=0.7, col="red")
# 使用pcoa()函數(shù)運(yùn)行PCoA分析和物種向量投影
# *****************************************
spe.h.pcoa <- pcoa(dist(spe.h))
# 雙序圖
par(mfrow=c(1,2))
# 第一個(gè)雙序圖:被動(dòng)加入Hellinger轉(zhuǎn)化的物種數(shù)據(jù)
biplot.pcoa(spe.h.pcoa, spe.h, dir.axis2=-1) 
abline(h=0, lty=3)
abline(v=0, lty=3)
# 第二個(gè)雙序圖:被動(dòng)加入Hellinger轉(zhuǎn)化后標(biāo)準(zhǔn)化的物種數(shù)據(jù)
spe.std <- apply(spe.h, 2, scale)          
biplot.pcoa(spe.h.pcoa, spe.std, dir.axis2=-1) 
abline(h=0, lty=3)
abline(v=0, lty=3)
#如何比較當(dāng)前PCoA結(jié)果與PCA結(jié)果讹挎?
> # 基于歐氏和非歐氏距離的PCoA結(jié)果比較
> # ***********************************
> # 基于Hellinger距離矩陣PCoA
> is.euclid(dist(spe.h))
[1] TRUE
> #如何比較當(dāng)前PCoA結(jié)果與PCA結(jié)果?
> # 基于歐氏和非歐氏距離的PCoA結(jié)果比較
> # ***********************************
> # 基于Hellinger距離矩陣PCoA
> is.euclid(dist(spe.h))
[1] TRUE
> summary(spe.h.pcoa)
           Length Class      Mode     
correction   2    -none-     character
note         1    -none-     character
values       5    data.frame list     
vectors    783    -none-     numeric  
trace        1    -none-     numeric  
> spe.h.pcoa$values
    Eigenvalues Relative_eig Broken_stick Cumul_eig Cumul_br_stick
1  7.2228938501 5.133437e-01  0.144128028 0.5133437      0.1441280
2  1.7987448715 1.278400e-01  0.107090991 0.6411837      0.2512190
3  1.2970422885 9.218307e-02  0.088572472 0.7333668      0.3397915
4  1.0780684157 7.662021e-02  0.076226793 0.8099870      0.4160183
5  0.6150272794 4.371107e-02  0.066967534 0.8536980      0.4829858
6  0.4691296076 3.334186e-02  0.059560127 0.8870399      0.5425459
7  0.4122804127 2.930149e-02  0.053387287 0.9163414      0.5959332
8  0.3236126046 2.299972e-02  0.048096282 0.9393411      0.6440295
9  0.1942121662 1.380300e-02  0.043466652 0.9531441      0.6874962
10 0.1685395834 1.197840e-02  0.039351426 0.9651225      0.7268476
11 0.1235468620 8.780692e-03  0.035647722 0.9739032      0.7624953
12 0.0835046563 5.934822e-03  0.032280719 0.9798380      0.7947760
13 0.0759645928 5.398937e-03  0.029194299 0.9852370      0.8239703
14 0.0513764625 3.651415e-03  0.026345296 0.9888884      0.8503156
15 0.0407307694 2.894807e-03  0.023699794 0.9917832      0.8740154
16 0.0313000342 2.224548e-03  0.021230658 0.9940077      0.8952461
17 0.0232647295 1.653465e-03  0.018915843 0.9956612      0.9141619
18 0.0151628431 1.077650e-03  0.016737194 0.9967389      0.9308991
19 0.0133146837 9.462979e-04  0.014679581 0.9976852      0.9455787
20 0.0103052835 7.324146e-04  0.012730263 0.9984176      0.9583090
21 0.0077422970 5.502586e-04  0.010878411 0.9989678      0.9691874
22 0.0063077278 4.483013e-04  0.009114743 0.9994161      0.9783021
23 0.0040023911 2.844570e-04  0.007431241 0.9997006      0.9857334
24 0.0021331293 1.516052e-04  0.005820935 0.9998522      0.9915543
25 0.0013971526 9.929809e-05  0.004277725 0.9999515      0.9958320
26 0.0004271756 3.036012e-05  0.002796244 0.9999819      0.9986283
27 0.0002552902 1.814392e-05  0.001371742 1.0000000      1.0000000
> # 基于Bray-Curtis相異矩陣的PCoA
> is.euclid(spe.bray)
[1] FALSE
> spe.bray.pcoa <- pcoa(spe.bray)
> spe.bray.pcoa$values    # 觀察第18軸及之后的特征根
     Eigenvalues  Relative_eig Rel_corr_eig Broken_stick Cum_corr_eig Cumul_br_stick
1   3.695331e+00  5.464785e-01 0.4332316505  0.144128028    0.4332317      0.1441280
2   1.098472e+00  1.624459e-01 0.1343469468  0.107090991    0.5675786      0.2512190
3   7.104740e-01  1.050674e-01 0.0896903953  0.088572472    0.6572690      0.3397915
4   4.149729e-01  6.136766e-02 0.0556797818  0.076226793    0.7129488      0.4160183
5   3.045604e-01  4.503947e-02 0.0429718837  0.066967534    0.7559207      0.4829858
6   1.917884e-01  2.836235e-02 0.0299924247  0.059560127    0.7859131      0.5425459
7   1.569703e-01  2.321333e-02 0.0259850463  0.053387287    0.8118981      0.5959332
8   1.319099e-01  1.950731e-02 0.0231007251  0.048096282    0.8349989      0.6440295
9   1.294251e-01  1.913984e-02 0.0228147364  0.043466652    0.8578136      0.6874962
10  8.667896e-02  1.281839e-02 0.0178948785  0.039351426    0.8757085      0.7268476
11  4.615780e-02  6.825978e-03 0.0132311063  0.035647722    0.8889396      0.7624953
12  3.864487e-02  5.714940e-03 0.0123664087  0.032280719    0.9013060      0.7947760
13  2.745800e-02  4.060586e-03 0.0110788585  0.029194299    0.9123848      0.8239703
14  1.306508e-02  1.932111e-03 0.0094223096  0.026345296    0.9218072      0.8503156
15  7.087896e-03  1.048183e-03 0.0087343669  0.023699794    0.9305415      0.8740154
16  4.039469e-03  5.973709e-04 0.0083835090  0.021230658    0.9389250      0.8952461
17  1.300594e-03  1.923365e-04 0.0080682790  0.018915843    0.9469933      0.9141619
18  0.000000e+00  0.000000e+00 0.0079145195  0.016737194    0.9549078      0.9308991
19 -3.534426e-05 -5.226833e-06 0.0074650365  0.014679581    0.9623729      0.9455787
20 -3.940676e-03 -5.827610e-04 0.0068877933  0.012730263    0.9692607      0.9583090
21 -8.956051e-03 -1.324452e-03 0.0062368816  0.010878411    0.9754975      0.9691874
22 -1.461149e-02 -2.160799e-03 0.0060783322  0.009114743    0.9815759      0.9783021
23 -1.598905e-02 -2.364517e-03 0.0054490158  0.007431241    0.9870249      0.9857334
24 -2.145686e-02 -3.173116e-03 0.0044461644  0.005820935    0.9914711      0.9915543
25 -3.017013e-02 -4.461666e-03 0.0039677639  0.004277725    0.9954388      0.9958320
26 -3.432671e-02 -5.076355e-03 0.0035909666  0.002796244    0.9990298      0.9986283
27 -3.760052e-02 -5.560497e-03 0.0009702192  0.001371742    1.0000000      1.0000000
28 -6.037087e-02 -8.927857e-03 0.0000000000  0.000000000    1.0000000      1.0000000
29 -6.880061e-02 -1.017448e-02 0.0000000000  0.000000000    1.0000000      1.0000000
> # 基于Bray-Curtis相異矩陣平方根的PCoA
> is.euclid(sqrt(spe.bray))
[1] TRUE
> spe.braysq.pcoa <- pcoa(sqrt(spe.bray))
> spe.braysq.pcoa$values  # 觀察特征根
   Eigenvalues Relative_eig Broken_stick Cumul_eig Cumul_br_stick
1   3.21560824  0.354677497  0.140256109 0.3546775      0.1402561
2   1.03573822  0.114240607  0.104541823 0.4689181      0.2447979
3   0.80071738  0.088318107  0.086684680 0.5572362      0.3314826
4   0.54426205  0.060031412  0.074779918 0.6172676      0.4062625
5   0.44091188  0.048632019  0.065851347 0.6658996      0.4721139
6   0.38896013  0.042901808  0.058708489 0.7088015      0.5308224
7   0.33391888  0.036830827  0.052756109 0.7456323      0.5835785
8   0.29313251  0.032332143  0.047654068 0.7779644      0.6312325
9   0.25584733  0.028219635  0.043189782 0.8061841      0.6744223
10  0.23652013  0.026087869  0.039221528 0.8322719      0.7136439
11  0.19443183  0.021445584  0.035650099 0.8537175      0.7492940
12  0.18072725  0.019933986  0.032403346 0.8736515      0.7816973
13  0.15112925  0.016669364  0.029427156 0.8903209      0.8111245
14  0.12732111  0.014043356  0.026679903 0.9043642      0.8378044
15  0.10582112  0.011671935  0.024128883 0.9160361      0.8619332
16  0.09697075  0.010695751  0.021747930 0.9267319      0.8836812
17  0.08837033  0.009747135  0.019515787 0.9364790      0.9031970
18  0.07362981  0.008121274  0.017414947 0.9446003      0.9206119
19  0.07259890  0.008007567  0.015430820 0.9526079      0.9360427
20  0.06753369  0.007448880  0.013551121 0.9600568      0.9495938
21  0.06587845  0.007266309  0.011765406 0.9673231      0.9613593
22  0.05253221  0.005794236  0.010064726 0.9731173      0.9714240
23  0.05203557  0.005739458  0.008441350 0.9788568      0.9798653
24  0.04946184  0.005455578  0.006888555 0.9843123      0.9867539
25  0.04130873  0.004556300  0.005400459 0.9888686      0.9921543
26  0.03812350  0.004204973  0.003971888 0.9930736      0.9961262
27  0.03326408  0.003668986  0.002598262 0.9967426      0.9987245
28  0.02953257  0.003257404  0.001275510 1.0000000      1.0000000
> # 基于Bray-Curtis相異矩陣的PCoA(Lingoes校正) 
> spe.brayl.pcoa <- pcoa(spe.bray, correction="lingoes")
> spe.brayl.pcoa$values   # 觀察特征根
     Eigenvalues    Corr_eig Rel_corr_eig Broken_stick Cum_corr_eig Cum_br_stick
1   3.695331e+00 3.764131306 0.4332316505  0.144128028    0.4332317    0.1441280
2   1.098472e+00 1.167272861 0.1343469468  0.107090991    0.5675786    0.2512190
3   7.104740e-01 0.779274609 0.0896903953  0.088572472    0.6572690    0.3397915
4   4.149729e-01 0.483773541 0.0556797818  0.076226793    0.7129488    0.4160183
5   3.045604e-01 0.373361024 0.0429718837  0.066967534    0.7559207    0.4829858
6   1.917884e-01 0.260589051 0.0299924247  0.059560127    0.7859131    0.5425459
7   1.569703e-01 0.225770961 0.0259850463  0.053387287    0.8118981    0.5959332
8   1.319099e-01 0.200710550 0.0231007251  0.048096282    0.8349989    0.6440295
9   1.294251e-01 0.198225738 0.0228147364  0.043466652    0.8578136    0.6874962
10  8.667896e-02 0.155479574 0.0178948785  0.039351426    0.8757085    0.7268476
11  4.615780e-02 0.114958410 0.0132311063  0.035647722    0.8889396    0.7624953
12  3.864487e-02 0.107445488 0.0123664087  0.032280719    0.9013060    0.7947760
13  2.745800e-02 0.096258614 0.0110788585  0.029194299    0.9123848    0.8239703
14  1.306508e-02 0.081865696 0.0094223096  0.026345296    0.9218072    0.8503156
15  7.087896e-03 0.075888508 0.0087343669  0.023699794    0.9305415    0.8740154
16  4.039469e-03 0.072840082 0.0083835090  0.021230658    0.9389250    0.8952461
17  1.300594e-03 0.070101207 0.0080682790  0.018915843    0.9469933    0.9141619
18  0.000000e+00 0.068765269 0.0079145195  0.016737194    0.9549078    0.9308991
19 -3.534426e-05 0.064859937 0.0074650365  0.014679581    0.9623729    0.9455787
20 -3.940676e-03 0.059844562 0.0068877933  0.012730263    0.9692607    0.9583090
21 -8.956051e-03 0.054189118 0.0062368816  0.010878411    0.9754975    0.9691874
22 -1.461149e-02 0.052811562 0.0060783322  0.009114743    0.9815759    0.9783021
23 -1.598905e-02 0.047343750 0.0054490158  0.007431241    0.9870249    0.9857334
24 -2.145686e-02 0.038630480 0.0044461644  0.005820935    0.9914711    0.9915543
25 -3.017013e-02 0.034473899 0.0039677639  0.004277725    0.9954388    0.9958320
26 -3.432671e-02 0.031200098 0.0035909666  0.002796244    0.9990298    0.9986283
27 -3.760052e-02 0.008429746 0.0009702192  0.001371742    1.0000000    1.0000000
28 -6.037087e-02 0.000000000 0.0000000000  0.000000000    1.0000000    1.0000000
29 -6.880061e-02 0.000000000 0.0000000000  0.000000000    1.0000000    1.0000000
> # 基于Bray-Curtis相異矩陣的PCoA(Cailliez校正)
> spe.brayc.pcoa <- pcoa(spe.bray, correction="cailliez")
> spe.brayc.pcoa$values   # 觀察特征根
     Eigenvalues   Corr_eig Rel_corr_eig Broken_stick Cum_corr_eig Cum_br_stick
1   3.695331e+00 5.20461437 0.4442681027  0.144128028    0.4442681    0.1441280
2   1.098472e+00 1.60465006 0.1369736134  0.107090991    0.5812417    0.2512190
3   7.104740e-01 1.09152082 0.0931726832  0.088572472    0.6744144    0.3397915
4   4.149729e-01 0.68985417 0.0588862466  0.076226793    0.7333006    0.4160183
5   3.045604e-01 0.52129425 0.0444978992  0.066967534    0.7777985    0.4829858
6   1.917884e-01 0.38710929 0.0330438139  0.059560127    0.8108424    0.5425459
7   1.569703e-01 0.36447367 0.0311116277  0.053387287    0.8419540    0.5959332
8   1.319099e-01 0.29671255 0.0253275095  0.048096282    0.8672815    0.6440295
9   1.294251e-01 0.27559544 0.0235249448  0.043466652    0.8908064    0.6874962
10  8.667896e-02 0.21600584 0.0184383509  0.039351426    0.9092448    0.7268476
11  4.615780e-02 0.15419396 0.0131620626  0.035647722    0.9224069    0.7624953
12  3.864487e-02 0.15378333 0.0131270104  0.032280719    0.9355339    0.7947760
13  2.745800e-02 0.11812808 0.0100834637  0.029194299    0.9456173    0.8239703
14  1.306508e-02 0.08848541 0.0075531526  0.026345296    0.9531705    0.8503156
15  7.087896e-03 0.07304055 0.0062347726  0.023699794    0.9594053    0.8740154
16  4.039469e-03 0.06999353 0.0059746780  0.021230658    0.9653799    0.8952461
17  1.300594e-03 0.05712927 0.0048765792  0.018915843    0.9702565    0.9141619
18  0.000000e+00 0.05587583 0.0047695843  0.016737194    0.9750261    0.9308991
19 -3.534426e-05 0.05432215 0.0046369623  0.014679581    0.9796631    0.9455787
20 -3.940676e-03 0.04912221 0.0041930931  0.012730263    0.9838562    0.9583090
21 -8.956051e-03 0.04100207 0.0034999542  0.010878411    0.9873561    0.9691874
22 -1.461149e-02 0.03777775 0.0032247250  0.009114743    0.9905808    0.9783021
23 -1.598905e-02 0.03451234 0.0029459878  0.007431241    0.9935268    0.9857334
24 -2.145686e-02 0.02959507 0.0025262474  0.005820935    0.9960531    0.9915543
25 -3.017013e-02 0.02436729 0.0020800022  0.004277725    0.9981331    0.9958320
26 -3.432671e-02 0.01902747 0.0016241925  0.002796244    0.9997573    0.9986283
27 -3.760052e-02 0.00284371 0.0002427403  0.001371742    1.0000000    1.0000000
28 -6.037087e-02 0.00000000 0.0000000000  0.000000000    1.0000000    1.0000000
29 -6.880061e-02 0.00000000 0.0000000000  0.000000000    1.0000000    1.0000000
#如果要選擇承載最大比例變差的前兩軸去了解數(shù)據(jù)的結(jié)構(gòu)吆玖,你會(huì)選擇上面哪
#種結(jié)果呢淤袜?

參考:
排序--5--PCoA主坐標(biāo)分析(1) (principal coordinate analysis)
Ordination_sections
wiki||Multidimensional scaling
統(tǒng)計(jì)26回: PCA 和 PCoA 有什麼不一樣
GUSTA ME||Principal coordinates analysis

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市衰伯,隨后出現(xiàn)的幾起案子铡羡,更是在濱河造成了極大的恐慌,老刑警劉巖意鲸,帶你破解...
    沈念sama閱讀 222,627評(píng)論 6 517
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件烦周,死亡現(xiàn)場(chǎng)離奇詭異,居然都是意外死亡怎顾,警方通過(guò)查閱死者的電腦和手機(jī)读慎,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 95,180評(píng)論 3 399
  • 文/潘曉璐 我一進(jìn)店門(mén),熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái)槐雾,“玉大人夭委,你說(shuō)我怎么就攤上這事∧记浚” “怎么了株灸?”我有些...
    開(kāi)封第一講書(shū)人閱讀 169,346評(píng)論 0 362
  • 文/不壞的土叔 我叫張陵崇摄,是天一觀的道長(zhǎng)。 經(jīng)常有香客問(wèn)我慌烧,道長(zhǎng)逐抑,這世上最難降的妖魔是什么? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 60,097評(píng)論 1 300
  • 正文 為了忘掉前任屹蚊,我火速辦了婚禮厕氨,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘汹粤。我一直安慰自己命斧,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 69,100評(píng)論 6 398
  • 文/花漫 我一把揭開(kāi)白布嘱兼。 她就那樣靜靜地躺著冯丙,像睡著了一般。 火紅的嫁衣襯著肌膚如雪遭京。 梳的紋絲不亂的頭發(fā)上,一...
    開(kāi)封第一講書(shū)人閱讀 52,696評(píng)論 1 312
  • 那天泞莉,我揣著相機(jī)與錄音哪雕,去河邊找鬼。 笑死鲫趁,一個(gè)胖子當(dāng)著我的面吹牛斯嚎,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播挨厚,決...
    沈念sama閱讀 41,165評(píng)論 3 422
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼堡僻,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來(lái)了疫剃?” 一聲冷哼從身側(cè)響起钉疫,我...
    開(kāi)封第一講書(shū)人閱讀 40,108評(píng)論 0 277
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎巢价,沒(méi)想到半個(gè)月后牲阁,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 46,646評(píng)論 1 319
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡壤躲,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 38,709評(píng)論 3 342
  • 正文 我和宋清朗相戀三年城菊,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片碉克。...
    茶點(diǎn)故事閱讀 40,861評(píng)論 1 353
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡凌唬,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出漏麦,到底是詐尸還是另有隱情客税,我是刑警寧澤况褪,帶...
    沈念sama閱讀 36,527評(píng)論 5 351
  • 正文 年R本政府宣布,位于F島的核電站霎挟,受9級(jí)特大地震影響窝剖,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜酥夭,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 42,196評(píng)論 3 336
  • 文/蒙蒙 一赐纱、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧熬北,春花似錦疙描、人聲如沸。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 32,698評(píng)論 0 25
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)。三九已至巫延,卻和暖如春效五,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背炉峰。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 33,804評(píng)論 1 274
  • 我被黑心中介騙來(lái)泰國(guó)打工畏妖, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人疼阔。 一個(gè)月前我還...
    沈念sama閱讀 49,287評(píng)論 3 379
  • 正文 我出身青樓戒劫,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國(guó)和親婆廊。 傳聞我的和親對(duì)象是個(gè)殘疾皇子迅细,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 45,860評(píng)論 2 361

推薦閱讀更多精彩內(nèi)容