Python Beginners(3) -- Pandas

Pandas Basics

Get column names and find the column name ends with certain words.

cname = food_info.columns.tolist()
gram_columns = []
for i in cname:
    if i.endswith("(g)"):
        gram_columns.append(i)
    else:
        pass
gram_df = food_info[gram_columns]
gram_df.head(3)

Pandas Normalizing Columns

max_protein = food_info["Protein_(g)"].max()
normalized_protein = food_info["Protein_(g)"]/max_protein

Pandas Column Sorting_values

food_info.sort_values("Norm_Nutr_Index", inplace = True, ascending = False)

check if null & count num

age = titanic_survival["age"]  # list age column
age_is_null = pd.isnull(age)  # get a series of True and False 
age_null_true = age[age_is_null]  # return to False value
age_null_count = len(age_null_true)  # count num of False
print (age_null_count)

calculate mean age where age is not null

age_is_null = pd.isnull(titanic_survival["age"])
age_is_true = titanic_survival["age"][age_is_null == False]
correct_mean_age = sum(age_is_true) / len(age_is_true)

However, missing data is so common that Series has a built-in function for it.

correct_mean_age = titanic_survival["age"].mean()

Get mean of a column group by other column value

def c_means(cname):
    passenger_classes = [1, 2, 3]
    fares_by_class = {}
    for i in passenger_classes:
        indexnum = (titanic_survival["pclass"] == i)
        m = titanic_survival[indexnum][cname].mean()
        fares_by_class[i] = m
    return fares_by_class

fares_by_class = c_means("fare")
print (fares_by_class)

Pandas_Pivot_Table

passenger_class_fares = titanic_survival.pivot_table(index="pclass", values="fare", aggfunc=np.mean)
  • to calculate several columns at the same time
    values = ["cname1", "cname2"]
import numpy as np
port_stats = titanic_survival.pivot_table(index="embarked", values=["fare", "survived"], aggfunc=np.sum)
print (port_stats)

dropna for certain columns

  • e.x. certain columns are ["age", "sex"] below
rop_na_rows = titanic_survival.dropna(axis=0)
drop_na_columns = titanic_survival.dropna(axis = 1)
new_titanic_survival = titanic_survival.dropna(axis = 0, subset = ["age", "sex"])

To access rows via loc or iloc

  • iloc using position index
  • loc using index num
first_five_rows = new_titanic_survival.iloc[0:5]
first_ten_rows = new_titanic_survival.iloc[0:10]
row_position_fifth = new_titanic_survival.iloc[4]
row_index_25 = new_titanic_survival.loc[25]

Check certain row values and column values

  • loc using label names, like "1100", "age"
row_index_1100_age = new_titanic_survival.loc[1100,"age"]
row_index_25_survived = new_titanic_survival.loc[25, "survived"]
five_rows_three_cols = new_titanic_survival.iloc[0:5, 0:3]
  • reset_index(drop = True)
titanic_reindexed = new_titanic_survival.reset_index(drop= True)
print (titanic_reindexed.iloc[0:5, 0:3])

df.apply(), apply function for the dataframe

def count_null(df):
    is_null = pd.isnull(df)  #return boolean matrix
    is_null_true = df[is_null]  # return is_null matrix
    is_null_count = len(is_null_true)  # count null numbers
    return is_null_count  # return null numbers
a = count_null(titanic_survival)
print (a)
column_null_count = titanic_survival.apply(count_null)
print(column_null_count)
  • check df["age"] <18, >=18, unknown
def is_minor(row):
    if row["age"] < 18:
        return "minor"
    elif row["age"] >= 18:
        return "adult"
    else:
        return "unknown"
age_labels = titanic_survival.apply(is_minor, axis=1)
print (age_labels)

pivot_table

age_group_survival = titanic_survival.pivot_table(index="age_labels", values=["survived"], aggfunc=np.mean)
print (age_group_survival)
print (type(age_group_survival))

Another way to do groupby:

import numpy as np
# Unique values in Major_category column.
mc = all_ages['Major_category'].unique()
mclist = mc.tolist()
for item in mclist:
    temp = all_ages.loc[all_ages["Major_category"] == item]
    grads = temp["Total"].sum()
    aa_cat_counts[item] = grads
print (aa_cat_counts)

Compare values from different df
Convert string value to float

import numpy as np
import pandas as pd
majors = recent_grads['Major'].unique()
rg_lower_count = 0
malist = majors.tolist()
#print (malist)
for i in malist:
    rtemp = recent_grads.loc[recent_grads["Major"]== i]
    rrate = rtemp["Unemployment_rate"]
    print (rrate)
    atemp = all_ages.loc[all_ages["Major"]== i]
    arate = atemp["Unemployment_rate"]
    if float(rrate) < float(arate): #may not be good practice
        rg_lower_count += 1
print (rg_lower_count)
最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子染乌,更是在濱河造成了極大的恐慌慎陵,老刑警劉巖栓撞,帶你破解...
    沈念sama閱讀 218,284評(píng)論 6 506
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件谭企,死亡現(xiàn)場(chǎng)離奇詭異祠墅,居然都是意外死亡冻璃,警方通過查閱死者的電腦和手機(jī)响谓,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 93,115評(píng)論 3 395
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái)省艳,“玉大人娘纷,你說(shuō)我怎么就攤上這事“峡唬” “怎么了赖晶?”我有些...
    開封第一講書人閱讀 164,614評(píng)論 0 354
  • 文/不壞的土叔 我叫張陵,是天一觀的道長(zhǎng)辐烂。 經(jīng)常有香客問我籍救,道長(zhǎng)横缔,這世上最難降的妖魔是什么泛释? 我笑而不...
    開封第一講書人閱讀 58,671評(píng)論 1 293
  • 正文 為了忘掉前任您没,我火速辦了婚禮,結(jié)果婚禮上扣草,老公的妹妹穿的比我還像新娘了牛。我一直安慰自己颜屠,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,699評(píng)論 6 392
  • 文/花漫 我一把揭開白布鹰祸。 她就那樣靜靜地躺著甫窟,像睡著了一般。 火紅的嫁衣襯著肌膚如雪蛙婴。 梳的紋絲不亂的頭發(fā)上粗井,一...
    開封第一講書人閱讀 51,562評(píng)論 1 305
  • 那天,我揣著相機(jī)與錄音街图,去河邊找鬼浇衬。 笑死,一個(gè)胖子當(dāng)著我的面吹牛台夺,可吹牛的內(nèi)容都是我干的径玖。 我是一名探鬼主播痴脾,決...
    沈念sama閱讀 40,309評(píng)論 3 418
  • 文/蒼蘭香墨 我猛地睜開眼颤介,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來(lái)了赞赖?” 一聲冷哼從身側(cè)響起滚朵,我...
    開封第一講書人閱讀 39,223評(píng)論 0 276
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎前域,沒想到半個(gè)月后辕近,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 45,668評(píng)論 1 314
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡匿垄,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,859評(píng)論 3 336
  • 正文 我和宋清朗相戀三年移宅,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片椿疗。...
    茶點(diǎn)故事閱讀 39,981評(píng)論 1 348
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡漏峰,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出届榄,到底是詐尸還是另有隱情浅乔,我是刑警寧澤,帶...
    沈念sama閱讀 35,705評(píng)論 5 347
  • 正文 年R本政府宣布铝条,位于F島的核電站靖苇,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏班缰。R本人自食惡果不足惜贤壁,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,310評(píng)論 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望埠忘。 院中可真熱鬧芯砸,春花似錦萧芙、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 31,904評(píng)論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)。三九已至包帚,卻和暖如春渔期,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背渴邦。 一陣腳步聲響...
    開封第一講書人閱讀 33,023評(píng)論 1 270
  • 我被黑心中介騙來(lái)泰國(guó)打工疯趟, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人谋梭。 一個(gè)月前我還...
    沈念sama閱讀 48,146評(píng)論 3 370
  • 正文 我出身青樓信峻,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國(guó)和親瓮床。 傳聞我的和親對(duì)象是個(gè)殘疾皇子盹舞,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 44,933評(píng)論 2 355

推薦閱讀更多精彩內(nèi)容