導(dǎo)讀
NormalizeMets
是一個(gè)R語(yǔ)言集成包,主要用于代謝組學(xué)研究中數(shù)據(jù)的歸一化。這個(gè)包可以用于去除數(shù)據(jù)中的噪音,如大樣本中存在的共性問題——質(zhì)譜信號(hào)偏移缰儿。那么除此之外,這個(gè)包還可以進(jìn)行圖形的交互式可視化以及獲得一些常規(guī)的統(tǒng)計(jì)結(jié)果散址,如生物標(biāo)記物的發(fā)現(xiàn)乖阵,聚類及PCA分析宣赔,分類及相關(guān)性分析。
Pipeline
第一步 導(dǎo)入數(shù)據(jù)
rm(list = ls())
library(NormalizeMets)
data("alldata_eg")
featuredata_eg<-alldata_eg$featuredata
# 1.featuredata is a metabolomics data matrix taking the following format, with metabolites in columns and samples in rows. Unique sample names should be provided as row names.
dataview(featuredata_eg)
# 2.sampledata sampledata is a dataframe that contains sample specific information瞪浸,行名是
# 樣品名儒将,列名是一些協(xié)變量信息,如性別对蒲、批次钩蚊、年齡、BMI
sampledata_eg <- alldata_eg$sampledata
dataview(sampledata_eg)
# 3.metabolitedata 包含代謝物的特定信息蹈矮,比如內(nèi)標(biāo)外標(biāo)或者正負(fù)對(duì)照砰逻,行名是代謝物的名稱
# ,其順序要和featuredata一致
metabolitedata_eg<-alldata_eg$metabolitedata
dataview(metabolitedata_eg)
alldata_eg<-list(featuredata=featuredata_eg, sampledata=sampledata_eg,
metabolitedata=metabolitedata_eg)
dataview(alldata_eg$metabolitedata)
第二步 數(shù)據(jù)處理
1. log轉(zhuǎn)換
代謝組學(xué)數(shù)據(jù)一般都呈現(xiàn)一個(gè)偏態(tài)分布(右偏)泛鸟,所以需要用一個(gè)合適的轉(zhuǎn)換來使得數(shù)據(jù)的分布變得對(duì)稱一些
logdata <- LogTransform(featuredata_eg,zerotona=TRUE) # zero=TRUE表示如果存在NA值則用數(shù)字0填充
2.缺失值的處理
代謝組學(xué)數(shù)據(jù)中一個(gè)常見的問題就是存在缺失值蝠咆,那么盡可能多的減少缺失值是數(shù)據(jù)分析前一項(xiàng)非常有必要做的一件事,這里用的填充方法是"k次最近鄰算法"北滥,或者用矩陣中最小值的"一半"作為缺失值的填充值
imp <- MissingValues(logdata$featuredata,sampledata_eg,metabolitedata_eg,
feature.cutof=0.8, sample.cutoff=0.8, method="knn")
3. 可視化
經(jīng)過log轉(zhuǎn)換的代謝物豐度數(shù)據(jù)可以通過諸多方式進(jìn)行展示刚操,這樣可以直觀的看出數(shù)據(jù)的變異情況聚類情況及離異值等
3.a 那么這里用的是根據(jù)個(gè)體不同批次或者整個(gè)代謝物的分布來看代謝物的一個(gè)relative log abundance(RLA)圖來展示
RlaPlots(imp$featuredata, sampledata_eg[,1], cex.axis = 0.6,saveinteractiveplot = TRUE)
RlaPlots(t(imp$featuredata), groupdata=rep("group",dim(imp$featuredata)[2]),
cex.axis = 0.6,saveinteractiveplot = TRUE,xlabel="Metabolites")
3.b pca圖,可以用于發(fā)現(xiàn)離異值
PcaPlots(imp$featuredata,sampledata_eg[,1],
scale=FALSE, center=TRUE, multiplot = TRUE, varplot = TRUE)
3.c 熱圖展示(略)
4. 數(shù)據(jù)的歸一化處理
這個(gè)包所采納的數(shù)據(jù)歸一化方法有4種:1)根據(jù)內(nèi)標(biāo);2)根據(jù)QC樣品;3)標(biāo)度化方法;4)聯(lián)合方法
4.a 如何根據(jù)QC樣品來進(jìn)行歸一化再芋,其是根據(jù)QC樣品在進(jìn)樣是有規(guī)律的插入赡茸,然后基于LOESS(locally estimated scatterplot smoothing)信號(hào)校正方法,在statTarget包也有介紹祝闻。
這里用的是另外一個(gè)新的數(shù)據(jù)集,注意這里的參數(shù)lg遗菠,應(yīng)該要在歸一化后做log轉(zhuǎn)換联喘,所以lg參數(shù)應(yīng)設(shè)置為lg=FALSE,示例方法
# NormQcsamples<- function(featuredata, sampledata, method = c("rlsc"), span = 0,
# deg = 2, lg = TRUE, saveoutput = FALSE,
# outputname = "qcsample_results", ...)
data(Didata)
dataview(Didata$sampledata)
Norm_rlsc<- NormQcsamples(sampledata=Didata$sampledata[order(Didata$sampledata$order),],
featuredata=Didata$featuredata[order(Didata$sampledata$order),],lg=FALSE)
4.b 評(píng)估以及選擇最佳的歸一化方法
通過鑒定生物標(biāo)記物來評(píng)判歸一化方法采集線性模型的數(shù)據(jù)歸一化方法辙纬,并且能夠鑒定與想要研究的目標(biāo)條件相關(guān)的生物標(biāo)記物
factormat<-model.matrix(~gender +Age +bmi, sampledata_eg)
ruv2Fit<-LinearModelFit(featuredata=imp$featuredata,
factormat=factormat,
ruv2=TRUE,k=2,
qcmets = which(metabolitedata_eg$IS ==1))
# Exploring metabolites associated with age
unadjustedFit<-LinearModelFit(featuredata=imp$featuredata,
factormat=factormat,
ruv2=FALSE)
Norm_is <-NormQcmets(imp$featuredata, method = "is",
isvec = imp$featuredata[,which(metabolitedata_eg$IS ==1)[1]])
isFit<-LinearModelFit(featuredata=Norm_is$featuredata,
factormat=factormat,
ruv2=FALSE)
lcoef_age<-list(unadjusted=unadjustedFit$coefficients[,"Age"],
is_age=isFit$coefficients[,"Age"],
ruv2_age=ruv2Fit$coefficients[,"Age"])
lpvals_age<-list(unadjusted=unadjustedFit$p.value[,"Age"],
is=isFit$p.value[,"Age"],
ruv2=ruv2Fit$p.value[,"Age"])
negcontrols<-metabolitedata_eg$names[which(metabolitedata_eg$IS==1)]
CompareVolcanoPlots(lcoef=lcoef_age,
lpvals_age,
normmeth = c(":unadjusted", ":is", ":ruv2"),
xlab="Coef",
negcontrol=negcontrols)
# 線性模型擬合的殘差RLA圖
lresiddata<-list(unadjusted=unadjustedFit$residuals,
is=isFit$residuals,
ruv2=ruv2Fit$residuals)
CompareRlaPlots(lresiddata,groupdata=sampledata_eg$batch,
yrange=c(-3,3),
normmeth = c("unadjusted:","is:","ruv2:"))
# 不同方法之間與未校正的數(shù)據(jù)的比較豁遭,venn圖
lnames<- list(names(ruv2Fit$coef[,"Age"])[which(ruv2Fit$p.value[,"Age"]<0.05)],
names(unadjustedFit$coef[,"Age"])[which(unadjustedFit$p.value[,"Age"]<0.05)],
names(isFit$coef[,"Age"])[which(isFit$p.value[,"Age"]<0.05)])
VennPlot(lnames, group.labels=c("ruv2","unadjusted","is"))
4.c 用于分類classification
svm<-SvmFit(featuredata=uv_ruvrandclust$featuredata,
groupdata=UVdata$sampledata$group,
crossvalid=TRUE,
k=5,
rocplot = TRUE)