MSER是最大穩(wěn)定極值區(qū)域:是對一幅灰度圖像(灰度值為0~255)取閾值進行二值化處理势告,閾值從0到255依次遞增。閾值的遞增類似于分水嶺算法中的水面的上升肌厨,隨著水面的上升培慌,有一些較矮的丘陵會被淹沒,如果從天空往下看柑爸,則大地分為陸地和水域兩個部分吵护,這類似于二值圖像。在得到的所有二值圖像中表鳍,圖像中的某些連通區(qū)域變化很小馅而,甚至沒有變化,則該區(qū)域就被稱為最大穩(wěn)定極值區(qū)域譬圣。具體算法的原理參考http://blog.csdn.net/zhaocj/article/details/40742191
此刻正在聽張學(xué)友的歌瓮恭,所以想到先做一個測試吧:
1屯蹦、不知道如何修改MSER中的參數(shù),如灰度值的變化量维哈,檢測到的組塊面積的范圍以及最大的變化率,只能使用默認(rèn)參數(shù)如下:
mser = cv2.MSER_create()
最后發(fā)現(xiàn)了http://bytedeco.org/javacpp-presets/opencv/apidocs/org/bytedeco/javacpp/opencv_features2d.MSER.html#create-int-int-int-double-double-int-double-double-int-登澜,發(fā)現(xiàn)可以醬紫根據(jù)自己的圖像修改參數(shù):
mser = cv2.MSER_create(_delta=2, _min_area=200, _max_variation=0.7)
2阔挠、下圖是調(diào)用mser后用polylines繪制輪廓的結(jié)果:
cv2.polylines(imgContours, hulls, 1, (255, 0, 0))
那如果想要得到外接矩形怎么辦?求助萬能的百度,給出的解決方案如下:http://www.cnblogs.com/jkmiao/p/6797252.html
mser = cv2.MSER_create()
regions, boxes = mser.detectRegions(gray)
for box in boxes:
x, y, w, h = box
cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)
cv2.imshow("img2", vis)
然而并不能解決問題脑蠕,在調(diào)用mser.detectRegions返回兩個函數(shù)的時候會報琼锋,http://answers.opencv.org/question/139636/want-to-get-area-from-mser-operator/這個帖子也出現(xiàn)了類似的錯誤:
contours, boxes = mser.detectRegions(imgThreshCopy)
Error:
TypeError: Required argument 'bboxes' (pos 2) not found
受到findcontours繪制外界矩形的啟發(fā)状勤,因此我嘗試了第二種解決方案:
for c in hulls:
x, y, w, h = cv2.boundingRect(c)
cv2.rectangle(vis, (x, y), (x + w, y + h), (255, 0, 0), 1)
至此完美的解決問題,下面是得到的結(jié)果圖:
最后貼上完整的代碼和運行結(jié)果:
#coding:utf-8
import numpy as np
import cv2
import nms
img = cv2.imread('3447976_0.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
vis = img.copy()
orig = img.copy()
mser = cv2.MSER_create()
regions = mser.detectRegions(gray, None)
hulls = [cv2.convexHull(p.reshape(-1, 1, 2)) for p in regions]
cv2.polylines(img, hulls, 1, (0, 255, 0))
cv2.imshow('img', img)
keep = []
for c in hulls:
x, y, w, h = cv2.boundingRect(c)
keep.append([x, y, x + w, y + h])
cv2.rectangle(vis, (x, y), (x + w, y + h), (255, 255, 0), 1)
print "[x] %d initial bounding boxes" % (len(keep))
cv2.imshow("hulls", vis)
keep2=np.array(keep)
pick = nms.nms(keep2, 0.5)
print "[x] after applying non-maximum, %d bounding boxes" % (len(pick))
# loop over the picked bounding boxes and draw them
for (startX, startY, endX, endY) in pick:
cv2.rectangle(orig, (startX, startY), (endX, endY), (255, 0, 0), 1)
cv2.imshow("After NMS", orig)
cv2.waitKey(0)
cv2.destroyAllWindows()
運行結(jié)果:[x] 1795 initial bounding boxes
[x] after applying non-maximum, 130 bounding boxes
可以看到應(yīng)用NMS之前檢測到的矩形框是1795個十气,應(yīng)用NMS后矩形框的數(shù)量減少到了130個,這張圖只是拿來做測試用春霍,并沒有調(diào)整自己的參數(shù)砸西,用了默認(rèn)值。效果還不錯吧址儒!