Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

會(huì)議進(jìn)程薄疚,包括三個(gè)平行軌道:

The conference program, with its three parallel tracks - the Research Track, the Applied Data Science Track and the Applied Invited Speakers Track - brings the two groups together.

(1)研究軌道昧捷;

(2)應(yīng)用數(shù)據(jù)科學(xué)軌道劝贸;

(3)應(yīng)用邀請(qǐng)演講者軌道 - 將兩個(gè)小組合并在一起蝇狼。

The conference this year continues with its tradition of a strong tutorial and workshop program on leading edge issues of data mining during the first two days of the program. The last three days are devoted to contributed technical papers, describing both novel, important research contributions, and deployed, innovative solutions.

前兩天:教程+數(shù)據(jù)挖掘前沿問(wèn)題

最后三天:重要文獻(xiàn)——描述新穎透敌、重要的研究成果,以及創(chuàng)新解決方案定页。


內(nèi)容:

paper List : http://www.kdd.org/kdd2017/accepted-papers


Three keynote talks, by Cynthia Dwork, Bin Yu, and Renée J. Miller touch on some of the hard, emerging issues before the field of data mining.

1. 三個(gè)主題演講——數(shù)據(jù)挖掘領(lǐng)域面臨的新興難題趟薄。

(1)What’s Fair?——Cynthia Dwork (Microsoft Research & Harvard University)

(2)The Future of Data Integration?

數(shù)據(jù)集成的未來(lái)——Renée J. Miller (University of Toronto)

(3)Three Principles of Data Science: Predictability, Stability and Computability

數(shù)據(jù)科學(xué)的三個(gè)原則:可預(yù)測(cè)性,穩(wěn)定性和可計(jì)算性——Bin Yu (University of California, Berkeley)


2. 12個(gè) Applied Invited Talks

(1)Foreword to the Applied Data Science – Invited Talks Track at KDD-2017

應(yīng)用數(shù)據(jù)科學(xué)前言 - KDD-2017特邀報(bào)告

(2)More than the Sum of its Parts: Building Domino Data Lab

不僅僅是相加:構(gòu)建Domino數(shù)據(jù)實(shí)驗(yàn)室——Eduardo Ari?o de la Rubia (Domino Data Lab)

(3)Mining Big Data in Neuro Genetics to Understand Muscular Dystrophy

挖掘神經(jīng)遺傳學(xué)中的大數(shù)據(jù)來(lái)了解肌營(yíng)養(yǎng)不良癥——Andy Berglund (University of Florida

(4)Industrial Machine Learning

工業(yè)機(jī)器學(xué)習(xí)——Josh Bloom (GE)

(5)Behavior Informatics to Discover Behavior Insight for Active and Tailored Client Management

行為信息學(xué)進(jìn)行行為洞察典徊,用于主動(dòng)和定制的客戶端管理——Longbing Cao (University of Technology Sydney)

(6)It Takes More than Math and Engineering to Hit the Bullseye with Data

擊中數(shù)據(jù)靶心不僅需要數(shù)學(xué)和工程——Paritosh Desai (Target)

(7)Planning and Learning under Uncertainty: Theory and Practice

不確定性下的規(guī)劃與學(xué)習(xí):理論與實(shí)踐——Jonathan P. How (Massachusetts Institute of Technology)

(8)Big Data in Climate: Opportunities and Challenges for Machine Learning

氣候大數(shù)據(jù):機(jī)器學(xué)習(xí)的機(jī)遇和挑戰(zhàn)——Anuj Karpatne, Vipin Kumar (University of Minnesota)

(9)Addressing Challenges with Big Data for Media Measurement

應(yīng)對(duì)大數(shù)據(jù)媒體測(cè)量挑戰(zhàn)——Mainak Mazumdar (Nielsen)

(10)Machine Learning Software in Practice: Quo Vadis?

機(jī)器學(xué)習(xí)軟件的實(shí)踐:Quo Vadis杭煎?——Szilárd Pafka (Epoch)

(11)Designing AI at Scale to Power Everyday Life

設(shè)計(jì)人工智能以幫助日常生活——Rajesh Parekh (Facebook)

(12)Spaceborne Data Enters the Mainstream

星載數(shù)據(jù)進(jìn)入主流——David Potere (Tellus Laboratories)


3. KDD 2017 Panels(人工智能相關(guān))

(1)Benchmarks and Process Management in Data Science: Will We Ever Get Over the Mess?

數(shù)據(jù)科學(xué)中的基準(zhǔn)測(cè)試和流程管理:我們能否克服困難?——Usama M. Fayyad (Open Insights), Arno Candel (H2O.ai, Inc.), Eduardo Ari?o de la Rubia (Domino Data Lab),Szilárd Pafka (Epoch), Anthony Chong (IKASI), Jeong-Yoon Lee (Microsoft)


(2)The Future of Artificially Intelligent Assistants

人工智能助手的未來(lái)——Muthu Muthukrishnan (Rutgers University), Andrew Tomkins, Larry Heck (Google), Alborz Geramifard (Amazon), Deepak Agarwal (LinkedIn)


4.KDD 2017 Research Papers (Oral Papers) 研究文獻(xiàn)

(1)Learning Certifiably Optimal Rule Lists

學(xué)習(xí)可證明的最優(yōu)規(guī)則列表——Elaine Angelino (University of California, Berkeley),Nicholas Larus-Stone, Daniel Alabi, Margo Seltzer (Harvard University), Cynthia Rudin (Duke University)

(2)Improved Degree Bounds and Full Spectrum Power Laws in Preferential Attachment Networks

在優(yōu)先附著網(wǎng)絡(luò)中改進(jìn)度邊界和全譜冪律——Chen Avin, Zvi Lotker (Ben Gurion University of the Negev),Yinon Nahum, David Peleg (Weizmann Institute of Science)

(3)Unsupervised Network Discovery for Brain Imaging Data

腦成像數(shù)據(jù)的無(wú)監(jiān)督網(wǎng)絡(luò)發(fā)現(xiàn)——Zilong Bai (University of California, Davis), Peter Walker, Anna Tschiffely (Naval Medical Research Center),Fei Wang (Cornell University), Ian Davidson (University of California, Davis)

(4)Patient Subtyping via Time-Aware LSTM Networks

病人分類卒落,通過(guò)時(shí)間感知的LSTM網(wǎng)絡(luò)——Inci M. Baytas (Michigan State University), Cao Xiao (IBM T. J. Watson Research Center),Xi Zhang, Fei Wang (Cornell University), Anil K. Jain, Jiayu Zhou (Michigan State University)

(5)Robust Top-k Multiclass SVM for Visual Category Recognition

穩(wěn)健Top-k多類SVM羡铲,用于視覺(jué)分類識(shí)別——Xiaojun Chang (Carnegie Mellon University), Yao-Liang Yu (University of Waterloo),Yi Yang (University of Technology Sydney)

(6)KATE: K-Competitive Autoencoder for Text

KATE:文本K-競(jìng)爭(zhēng)自動(dòng)編碼器——Yu Chen, Mohammed J. Zaki (Rensselaer Polytechnic Institute)

(7)A Minimal Variance Estimator for the Cardinality of Big Data Set Intersection

大數(shù)據(jù)集交叉基數(shù)的最小方差估計(jì)——Reuven Cohen, Liran Katzir, Aviv Yehezkel (Technion)

(8)HyperLogLog Hyperextended: Sketches for Concave Sublinear Frequency Statistics

HyperLogLog Hyperextended:用于凹次線性頻率統(tǒng)計(jì)的草圖——Edith Cohen (Google Research)

(9)Fast Enumeration of Large k-Plexes

Large k-Plexes的快速枚舉——Alessio Conte (University of Pisa), Donatella Firmani (Roma Tre University),Caterina Mordente (Be Think Solve Execute), Maurizio Patrignani, Riccardo Torlone (Roma Tre University)

(10)Matrix Profile V: A Generic Technique to Incorporate Domain Knowledge into Motif Discovery

矩陣Profile V:將領(lǐng)域知識(shí)合并到Motif發(fā)現(xiàn)中的一種通用技術(shù)

(10)metapath2vec: Scalable Representation Learning for Heterogeneous Networks

metapath2vec:異構(gòu)網(wǎng)絡(luò)的可擴(kuò)展表示學(xué)習(xí)

(11)Ego-Splitting Framework: from Non-Overlapping to Overlapping Clusters

自分割框架:從非重疊到重疊的集群

(12)Contextual Motifs: Increasing the Utility of Motifs using Contextual Data

上下文的圖案:使用上下文數(shù)據(jù)增加圖案效用

(13)Unsupervised P2P Rental Recommendations via Integer Programming

無(wú)監(jiān)督的P2P出租推薦,通過(guò)整數(shù)編程

(14)The Co-Evolution Model for Social Network Evolving and Opinion Migration

社會(huì)網(wǎng)絡(luò)演進(jìn)和意見遷移的共同演化模型

(15)Groups-Keeping Solution Path Algorithm for Sparse Regression with Automatic Feature Grouping

歸分組解決路徑算法导绷,用于基于自動(dòng)特征分組的稀疏回歸

(16)Clustering Individual Transactional Data for Masses of Users

用戶群體的單個(gè)交易數(shù)據(jù)聚類

(17)Network Inference via the Time-Varying Graphical Lasso

通過(guò)時(shí)變圖套索進(jìn)行網(wǎng)絡(luò)推斷

(18)Efficient Correlated Topic Modeling with Topic Embedding

有效的相關(guān)主題建模與主題嵌入

(19)Accelerating Innovation Through Analogy Mining

通過(guò)類比挖掘加速創(chuàng)新

(20)Communication-Efficient Distributed Block Minimization for Nonlinear Kernel Machines

通信高效分布?jí)K最小化犀勒,用于非線性核機(jī)制

(21)A Hierarchical Algorithm for Extreme Clustering

一種極端聚類的分層算法

(21)Estimating Treatment Effect in the Wild via Differentiated Confounder Balancing

通過(guò)差異配種平衡屎飘,評(píng)估野外治療效果

(22)The Selective Labels Problem: Evaluating Algorithmic Predictions in the Presence of Unobservables

選擇性標(biāo)簽問(wèn)題:在不可觀察情況下評(píng)估算法預(yù)測(cè)

(23)Constructivism Learning: A Learning Paradigm for Transparent Predictive Analytics

建構(gòu)主義學(xué)習(xí):透明預(yù)測(cè)分析的學(xué)習(xí)范式

(24)Is the Whole Greater Than the Sum of Its Parts?

(25)Collaborative Variational Autoencoder for Recommender Systems

用于推薦系統(tǒng)的協(xié)作變分自動(dòng)編碼器

(26)Linearized GMM Kernels and Normalized Random Fourier Features

線性化GMM核與歸一化隨機(jī)傅立葉特征

(27)Discrete Content-aware Matrix Factorization

感知內(nèi)容的矩陣分解

(28)Effective and Real-time In-App Activity Analysis in Encrypted Internet Traffic Streams

加密的互聯(lián)網(wǎng)業(yè)務(wù)流中有效和實(shí)時(shí)的應(yīng)用內(nèi)活動(dòng)分析

(29)Functional Annotation of Human Protein Coding Isoforms via Non-convex Multi-Instance Learning

人類蛋白質(zhì)編碼亞型的非凸多實(shí)例學(xué)習(xí)功能注釋

(30)Discovering Reliable Approximate Functional Dependencies

發(fā)現(xiàn)可靠的近似函數(shù)依賴

(21)Towards an Optimal Subspace for K-Means

(22)SPARTan: Scalable PARAFAC2 for Large & Sparse Data

用于大型稀疏數(shù)據(jù)的可擴(kuò)展的PARAFAC2

(23)struc2vec: Learning Node Representations from Structural Identity

(24)Similarity Forests

(25)Structural Deep Brain Network Mining

(26)On Finding Socially Tenuous Groups for Online Social Networks

(27)A Local Algorithm for Structure-Preserving Graph Cut

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末妥曲,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子钦购,更是在濱河造成了極大的恐慌檐盟,老刑警劉巖,帶你破解...
    沈念sama閱讀 211,194評(píng)論 6 490
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件押桃,死亡現(xiàn)場(chǎng)離奇詭異葵萎,居然都是意外死亡,警方通過(guò)查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 90,058評(píng)論 2 385
  • 文/潘曉璐 我一進(jìn)店門羡忘,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái)谎痢,“玉大人,你說(shuō)我怎么就攤上這事卷雕〗谠常” “怎么了?”我有些...
    開封第一講書人閱讀 156,780評(píng)論 0 346
  • 文/不壞的土叔 我叫張陵漫雕,是天一觀的道長(zhǎng)滨嘱。 經(jīng)常有香客問(wèn)我,道長(zhǎng)浸间,這世上最難降的妖魔是什么太雨? 我笑而不...
    開封第一講書人閱讀 56,388評(píng)論 1 283
  • 正文 為了忘掉前任,我火速辦了婚禮魁蒜,結(jié)果婚禮上囊扳,老公的妹妹穿的比我還像新娘。我一直安慰自己兜看,他們只是感情好宪拥,可當(dāng)我...
    茶點(diǎn)故事閱讀 65,430評(píng)論 5 384
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著铣减,像睡著了一般她君。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上葫哗,一...
    開封第一講書人閱讀 49,764評(píng)論 1 290
  • 那天缔刹,我揣著相機(jī)與錄音,去河邊找鬼劣针。 笑死校镐,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的捺典。 我是一名探鬼主播鸟廓,決...
    沈念sama閱讀 38,907評(píng)論 3 406
  • 文/蒼蘭香墨 我猛地睜開眼,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼襟己!你這毒婦竟也來(lái)了引谜?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 37,679評(píng)論 0 266
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤擎浴,失蹤者是張志新(化名)和其女友劉穎员咽,沒(méi)想到半個(gè)月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體贮预,經(jīng)...
    沈念sama閱讀 44,122評(píng)論 1 303
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡贝室,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 36,459評(píng)論 2 325
  • 正文 我和宋清朗相戀三年契讲,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片滑频。...
    茶點(diǎn)故事閱讀 38,605評(píng)論 1 340
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡捡偏,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出峡迷,到底是詐尸還是另有隱情霹琼,我是刑警寧澤,帶...
    沈念sama閱讀 34,270評(píng)論 4 329
  • 正文 年R本政府宣布凉当,位于F島的核電站枣申,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏看杭。R本人自食惡果不足惜忠藤,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 39,867評(píng)論 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望楼雹。 院中可真熱鬧模孩,春花似錦、人聲如沸贮缅。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,734評(píng)論 0 21
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)谴供。三九已至块茁,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間桂肌,已是汗流浹背数焊。 一陣腳步聲響...
    開封第一講書人閱讀 31,961評(píng)論 1 265
  • 我被黑心中介騙來(lái)泰國(guó)打工, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留崎场,地道東北人佩耳。 一個(gè)月前我還...
    沈念sama閱讀 46,297評(píng)論 2 360
  • 正文 我出身青樓,卻偏偏與公主長(zhǎng)得像谭跨,于是被迫代替她去往敵國(guó)和親干厚。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 43,472評(píng)論 2 348

推薦閱讀更多精彩內(nèi)容

  • 古語(yǔ)有云:一言既出駟馬難追螃宙。說(shuō)的是如果一個(gè)人立下誓言蛮瞄,話已出口,就再也不能收回來(lái)污呼。心理學(xué)上也有承諾一致機(jī)制裕坊,如果你...
    蝎子小貓咪閱讀 457評(píng)論 0 6
  • 一包竹、技術(shù)總結(jié)1燕酷、以Integer為例籍凝,創(chuàng)建包裝類Integer ig=new Integer(10); //in...
    蠟筆小噺沒(méi)有煩惱閱讀 1,446評(píng)論 0 6
  • 目錄:那時(shí)花正開 夏小伊和高夕寒看著打鬧的幾個(gè)人,有說(shuō)有笑的苗缩,非常開心饵蒂。正說(shuō)著,江錦瑟跑了過(guò)來(lái)酱讶,說(shuō):“你倆剛才說(shuō)啥...
    土立土及閱讀 501評(píng)論 0 2
  • 簡(jiǎn)書目前還沒(méi)有插入代碼塊的選項(xiàng)退盯,對(duì)it這一行的我們來(lái)說(shuō),為了給大家分享技術(shù)泻肯,代碼片呈現(xiàn)的方式或多或少很有必要啦~~...
    wblearn閱讀 16,741評(píng)論 22 63