來(lái)源/AI慕課(ID:MOOC1024)
本文英文出處:Robbie Allen
翻譯/吳楚
校對(duì)/田晉陽(yáng)
機(jī)器學(xué)習(xí)的發(fā)展可以追溯到1959年啥供,有著豐富的歷史。這個(gè)領(lǐng)域也正在以前所未有的速度進(jìn)化薄翅。在之前的一篇文章(https://unsupervisedmethods.com/why-artificial-intelligence-is-different-from-previous-technology-waves-764d7710df8b)中沙兰,我們討論過(guò)為什么通用人工智能領(lǐng)域即將要爆發(fā)。有興趣入坑ML的小伙伴不要拖延了翘魄,時(shí)不我待鼎天!
在秋季開(kāi)始準(zhǔn)備博士項(xiàng)目的時(shí)候,我已經(jīng)精選了一些有關(guān)機(jī)器學(xué)習(xí)和NLP的優(yōu)質(zhì)網(wǎng)絡(luò)資源熟丸。一般我會(huì)找一個(gè)有意思的教程或者視頻训措,再由此找到三四個(gè),甚至更多的教程或者視頻光羞。猛回頭绩鸣,發(fā)現(xiàn)標(biāo)收藏夾又多了20個(gè)資源待我學(xué)習(xí)(推薦提升效率工具Tab Bundler)。
找到超過(guò)25個(gè)有關(guān)ML的“小抄”后纱兑,我寫(xiě)一篇博文(https://unsupervisedmethods.com/cheat-sheet-of-machine-learning-and-python-and-math-cheat-sheets-a4afe4e791b6)呀闻,里面的資源都有超鏈接。
為了幫助也在經(jīng)歷類(lèi)似探索過(guò)程的童鞋潜慎,我把至今發(fā)現(xiàn)的最好的教程匯總了一個(gè)列表捡多。當(dāng)然這不是網(wǎng)絡(luò)上有關(guān)ML的最全集合,而且其中有一部分內(nèi)容很普通铐炫。我的目標(biāo)是要找到最好的有關(guān)機(jī)器學(xué)習(xí)子方向和NLP的教程垒手。
我引用了能簡(jiǎn)潔介紹概念的基礎(chǔ)內(nèi)容。我已經(jīng)回避包含一些大部頭書(shū)的章節(jié)倒信,和對(duì)理解概念沒(méi)有幫助的科研論文科贬。那為什么不買(mǎi)一本書(shū)呢? 因?yàn)榻坛棠芨玫貛椭銓W(xué)一技之長(zhǎng)或者打開(kāi)新視野鳖悠。
我把這博文分成四個(gè)部分榜掌,機(jī)器學(xué)習(xí),NLP乘综,Python憎账,和數(shù)學(xué)基礎(chǔ)。在每一小節(jié)我會(huì)隨機(jī)引入一些問(wèn)題卡辰。由于這方面學(xué)習(xí)材料太豐富了胞皱,本文并未涵括所有內(nèi)容。
機(jī)器學(xué)習(xí)
1九妈、機(jī)器學(xué)習(xí)就是這么好玩朴恳!(medium.com/@ageitgey)
機(jī)器學(xué)習(xí)速成課程(Berkeley的ML):
Part I:https://ml.berkeley.edu/blog/2016/11/06/tutorial-1/
Part II:https://ml.berkeley.edu/blog/2016/12/24/tutorial-2/
Part III:https://ml.berkeley.edu/blog/2017/02/04/tutorial-3/
機(jī)器學(xué)習(xí)入門(mén)與應(yīng)用:實(shí)例圖解(toptal.com)
https://www.toptal.com/machine-learning/machine-learning-theory-an-introductory-primer
機(jī)器學(xué)習(xí)的簡(jiǎn)易指南 (monkeylearn.com)
https://monkeylearn.com/blog/a-gentle-guide-to-machine-learning/
如何選擇機(jī)器學(xué)習(xí)算法?(sas.com)
https://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/
2允蚣、Activation and Loss Functions
激活函數(shù)與損失函數(shù)
sigmoid 神經(jīng)元 (neuralnetworksanddeeplearning.com)
http://neuralnetworksanddeeplearning.com/chap1.html#sigmoid_neurons
激活函數(shù)在神經(jīng)網(wǎng)絡(luò)中有什么作用?(quora.com)
https://www.quora.com/What-is-the-role-of-the-activation-function-in-a-neural-network
神經(jīng)網(wǎng)絡(luò)的激活函數(shù)大全及其優(yōu)劣 (stats.stackexchange.com)
激活函數(shù)及其分類(lèi)比較(medium.com)
理解對(duì)數(shù)損失 (exegetic.biz)
http://www.exegetic.biz/blog/2015/12/making-sense-logarithmic-loss/
損失函數(shù)(Stanford CS231n)
http://cs231n.github.io/neural-networks-2/#losses
損失函數(shù)L1 與L2 比較(rishy.github.io)
http://rishy.github.io/ml/2015/07/28/l1-vs-l2-loss/
交叉熵?fù)p失函數(shù)(neuralnetworksanddeeplearning.com)
http://neuralnetworksanddeeplearning.com/chap3.html#the_cross-entropy_cost_function
3呆贿、偏差(Bias)
神經(jīng)網(wǎng)絡(luò)中的偏差的作用(stackoverflow.com)
https://stackoverflow.com/questions/2480650/role-of-bias-in-neural-networks/2499936#2499936
神經(jīng)網(wǎng)絡(luò)中的偏差節(jié)點(diǎn)(makeyourownneuralnetwork.blogspot.com)
http://makeyourownneuralnetwork.blogspot.com/2016/06/bias-nodes-in-neural-networks.html
什么是人工神經(jīng)網(wǎng)絡(luò)中的偏差 (quora.com)
https://www.quora.com/What-is-bias-in-artificial-neural-network
4嚷兔、感知器(Perceptron)
感知器模型(neuralnetworksanddeeplearning.com)
http://neuralnetworksanddeeplearning.com/chap1.html#perceptrons
感知器(natureofcode.com)
http://natureofcode.com/book/chapter-10-neural-networks/#chapter10_figure3
一層的神經(jīng)網(wǎng)絡(luò)(感知器模型)(dcu.ie)
http://computing.dcu.ie/~humphrys/Notes/Neural/single.neural.html
從感知器模型到深度網(wǎng)絡(luò)(toptal.com)
5森渐、回歸算法
線(xiàn)性回歸分析簡(jiǎn)介(duke.edu)
http://people.duke.edu/~rnau/regintro.htm
線(xiàn)性回歸 (ufldl.stanford.edu)
http://ufldl.stanford.edu/tutorial/supervised/LinearRegression/
線(xiàn)性回歸 (readthedocs.io)
http://ml-cheatsheet.readthedocs.io/en/latest/linear_regression.html
邏輯斯特回歸 (readthedocs.io)
http://ml-cheatsheet.readthedocs.io/en/latest/logistic_regression.html
機(jī)器學(xué)習(xí)之簡(jiǎn)單線(xiàn)性回歸教程(machinelearningmastery.com)
http://machinelearningmastery.com/simple-linear-regression-tutorial-for-machine-learning/
機(jī)器學(xué)習(xí)之邏輯斯特回歸教程(machinelearningmastery.com)
http://machinelearningmastery.com/logistic-regression-tutorial-for-machine-learning/
softmax 回歸(ufldl.stanford.edu)
http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/
6、梯度下降
基于梯度下降的學(xué)習(xí) (neuralnetworksanddeeplearning.com)
http://neuralnetworksanddeeplearning.com/chap1.html#learning_with_gradient_descent
梯度下降(iamtrask.github.io)
http://iamtrask.github.io/2015/07/27/python-network-part2/
如何理解梯度下降算法冒晰?(kdnuggets.com)
http://www.kdnuggets.com/2017/04/simple-understand-gradient-descent-algorithm.html
梯度下降優(yōu)化算法概覽(sebastianruder.com)
http://sebastianruder.com/optimizing-gradient-descent/
優(yōu)化算法:隨機(jī)梯度下降算法 (Stanford CS231n)
http://cs231n.github.io/optimization-1/
7同衣、生成學(xué)習(xí)
生成學(xué)習(xí)算法 (Stanford CS229)
http://cs229.stanford.edu/notes/cs229-notes2.pdf
貝葉斯分類(lèi)算法之實(shí)例解析(monkeylearn.com)
https://monkeylearn.com/blog/practical-explanation-naive-bayes-classifier/
8、支持向量機(jī)
支持向量機(jī)(SVM)入門(mén)(monkeylearn.com)
https://monkeylearn.com/blog/introduction-to-support-vector-machines-svm/
支持向量機(jī)(Stanford CS229)
http://cs229.stanford.edu/notes/cs229-notes3.pdf
線(xiàn)性分類(lèi):支持向量機(jī)壶运,Softmax (Stanford 231n)
http://cs231n.github.io/linear-classify/
9耐齐、后向傳播算法(Backpropagation)
后向傳播算法必知(medium.com/@karpathy)
https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b
來(lái),給我圖解一下神經(jīng)網(wǎng)絡(luò)后向傳播算法蒋情?(github.com/rasbt)
https://github.com/rasbt/python-machine-learning-book/blob/master/faq/visual-backpropagation.md
后向傳播算法是如何運(yùn)行的埠况?(neuralnetworksanddeeplearning.com)
http://neuralnetworksanddeeplearning.com/chap2.html
沿時(shí)后向傳播算法與梯度消失(wildml.com)
簡(jiǎn)易入門(mén)沿時(shí)后向傳播算法(machinelearningmastery.com)
http://machinelearningmastery.com/gentle-introduction-backpropagation-time/
奔跑吧,后向傳播算法棵癣!(Stanford CS231n)
http://cs231n.github.io/optimization-2/
10辕翰、深度學(xué)習(xí)
果殼里的深度學(xué)習(xí)(nikhilbuduma.com)
http://nikhilbuduma.com/2014/12/29/deep-learning-in-a-nutshell/
深度學(xué)習(xí)教程 (Quoc V. Le)
http://ai.stanford.edu/~quocle/tutorial1.pdf
深度學(xué)習(xí),什么鬼狈谊?(machinelearningmastery.com)
http://machinelearningmastery.com/what-is-deep-learning/
什么是人工智能喜命,機(jī)器學(xué)習(xí),深度學(xué)習(xí)之間的區(qū)別河劝? (nvidia.com)
11壁榕、優(yōu)化算法與降維算法
數(shù)據(jù)降維的七招煉金術(shù)(knime.org)
https://www.knime.org/blog/seven-techniques-for-data-dimensionality-reduction
主成分分析(Stanford CS229)
http://cs229.stanford.edu/notes/cs229-notes10.pdf
Dropout: 改進(jìn)神經(jīng)網(wǎng)絡(luò)的一個(gè)簡(jiǎn)單方法(Hinton @ NIPS 2012)
http://videolectures.net/site/normal_dl/tag=741100/nips2012_hinton_networks_01.pdf
如何溜你們家的深度神經(jīng)網(wǎng)絡(luò)?(rishy.github.io)
http://rishy.github.io/ml/2017/01/05/how-to-train-your-dnn/
**12赎瞎、長(zhǎng)短期記憶(LSTM) **
老司機(jī)帶你簡(jiǎn)易入門(mén)長(zhǎng)短期神經(jīng)網(wǎng)絡(luò)(machinelearningmastery.com)
http://machinelearningmastery.com/gentle-introduction-long-short-term-memory-networks-experts/
理解LSTM網(wǎng)絡(luò)(colah.github.io)
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
漫談LSTM模型(echen.me)
http://blog.echen.me/2017/05/30/exploring-lstms/
小學(xué)生看完這教程都可以用Python實(shí)現(xiàn)一個(gè)LSTM-RNN (iamtrask.github.io)
http://iamtrask.github.io/2015/11/15/anyone-can-code-lstm/
13牌里、卷積神經(jīng)網(wǎng)絡(luò)(CNNs)
卷積網(wǎng)絡(luò)入門(mén)(neuralnetworksanddeeplearning.com)
http://neuralnetworksanddeeplearning.com/chap6.html#introducing_convolutional_networks
深度學(xué)習(xí)與卷積神經(jīng)網(wǎng)絡(luò)模型(medium.com/@ageitgey)
拆解卷積網(wǎng)絡(luò)模型(colah.github.io)
http://colah.github.io/posts/2014-07-Conv-Nets-Modular/
理解卷積網(wǎng)絡(luò)(colah.github.io)
http://colah.github.io/posts/2014-07-Understanding-Convolutions/
14、遞歸神經(jīng)網(wǎng)絡(luò)(RNNs)
遞歸神經(jīng)網(wǎng)絡(luò)教程 (wildml.com)
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
注意力模型與增強(qiáng)型遞歸神經(jīng)網(wǎng)絡(luò)(distill.pub)
http://distill.pub/2016/augmented-rnns/
這么不科學(xué)的遞歸神經(jīng)網(wǎng)絡(luò)模型(karpathy.github.io)
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
深入遞歸神經(jīng)網(wǎng)絡(luò)模型(nikhilbuduma.com)
http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/
** 15煎娇、強(qiáng)化學(xué)習(xí)**
給小白看的強(qiáng)化學(xué)習(xí)及其實(shí)現(xiàn)指南 (analyticsvidhya.com)
https://www.analyticsvidhya.com/blog/2017/01/introduction-to-reinforcement-learning-implementation/
強(qiáng)化學(xué)習(xí)教程(mst.edu)
https://web.mst.edu/~gosavia/tutorial.pdf
強(qiáng)化學(xué)習(xí)二庵,你學(xué)了么?(wildml.com)
http://www.wildml.com/2016/10/learning-reinforcement-learning/
深度強(qiáng)化學(xué)習(xí):開(kāi)掛玩Pong (karpathy.github.io)
http://karpathy.github.io/2016/05/31/rl/
16缓呛、對(duì)抗式生成網(wǎng)絡(luò)模型(GANs)
什么是對(duì)抗式生成網(wǎng)絡(luò)模型催享?(nvidia.com)
https://blogs.nvidia.com/blog/2017/05/17/generative-adversarial-network/
用對(duì)抗式生成網(wǎng)絡(luò)創(chuàng)造8個(gè)像素的藝術(shù)(medium.com/@ageitgey)
對(duì)抗式生成網(wǎng)絡(luò)入門(mén)(TensorFlow)(aylien.com)
http://blog.aylien.com/introduction-generative-adversarial-networks-code-tensorflow/
《對(duì)抗式生成網(wǎng)絡(luò)》(小學(xué)一年級(jí)~上冊(cè))(oreilly.com)
https://www.oreilly.com/learning/generative-adversarial-networks-for-beginners
17、多任務(wù)學(xué)習(xí)
深度神經(jīng)網(wǎng)絡(luò)中的多任務(wù)學(xué)習(xí)概述(sebastianruder.com)
http://sebastianruder.com/multi-task/index.html
NLP
1哟绊、NLP
《基于神經(jīng)網(wǎng)絡(luò)模型的自然語(yǔ)言處理》(小學(xué)一年級(jí)~上冊(cè))(Yoav Goldberg)
http://u.cs.biu.ac.il/~yogo/nnlp.pdf
自然語(yǔ)言處理權(quán)威指南(monkeylearn.com)
https://monkeylearn.com/blog/the-definitive-guide-to-natural-language-processing/
自然語(yǔ)言處理入門(mén)(algorithmia.com)
https://blog.algorithmia.com/introduction-natural-language-processing-nlp/
自然語(yǔ)言處理教程 (vikparuchuri.com)
http://www.vikparuchuri.com/blog/natural-language-processing-tutorial/
Natural Language Processing (almost) from Scratch (arxiv.org)
初高中生課程:自然語(yǔ)言處理 (arxiv.org)
https://arxiv.org/pdf/1103.0398.pdf
2因妙、深度學(xué)習(xí)和 NLP
基于深度學(xué)習(xí)的NLP應(yīng)用(arxiv.org)
https://arxiv.org/pdf/1703.03091.pdf
基于深度學(xué)習(xí)的NLP(Richard Socher)
https://nlp.stanford.edu/courses/NAACL2013/NAACL2013-Socher-Manning-DeepLearning.pdf
理解卷積神經(jīng)網(wǎng)絡(luò)在NLP中的應(yīng)用(wildml.com)
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
深度學(xué)習(xí),NLP票髓,表示學(xué)習(xí)(colah.github.io)
http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
嵌入表示攀涵,編碼,注意力洽沟,預(yù)測(cè) : 新一代深度學(xué)習(xí)因NLP的精妙而存在(explosion.ai)
https://explosion.ai/blog/deep-learning-formula-nlp
理解基于神經(jīng)網(wǎng)絡(luò)的自然語(yǔ)言處理(Torch實(shí)現(xiàn)) (nvidia.com)
深度學(xué)習(xí)在NLP中的應(yīng)用(Pytorch實(shí)現(xiàn)) (pytorich.org)
http://pytorch.org/tutorials/beginner/deep_learning_nlp_tutorial.html
** 3以故、詞向量(Word Vectors)**
詞袋法遇到感知器裝袋法(kaggle.com)
https://www.kaggle.com/c/word2vec-nlp-tutorial
學(xué)習(xí)單詞嵌入表示法(sebastianruder.com)
Part I:http://sebastianruder.com/word-embeddings-1/index.html
Part II:http://sebastianruder.com/word-embeddings-softmax/index.html
Part III:http://sebastianruder.com/secret-word2vec/index.html
單詞嵌入表示的神奇力量(acolyer.org)
https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/
解釋word2vec 的參數(shù)學(xué)習(xí)(arxiv.org)
https://arxiv.org/pdf/1411.2738.pdf
word2vec教程 skip-gram 模型,負(fù)采樣(mccormickml.com)
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
4裆操、Encoder-Decoder
注意力機(jī)制與記憶機(jī)制在深度學(xué)習(xí)與NLP中的應(yīng)用(wildml.com)
http://www.wildml.com/2016/01/attention-and-memory-in-deep-learning-and-nlp/
序列到序列模型(tensorflow.org)
https://www.tensorflow.org/tutorials/seq2seq
利用神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)序列到序列模型(NIPS 2014)
https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
基于深度學(xué)習(xí)和魔法序列的語(yǔ)言翻譯(medium.com/@ageitgey)
如何使用編碼-解碼LSTM輸出隨機(jī)整數(shù)對(duì)應(yīng)的序列(machinelearningmastery.com)
tf-seq2seq (google.github.io)
https://google.github.io/seq2seq/
Python
1怒详、 Python
使用Python精通機(jī)器學(xué)習(xí)的七步法(kdnuggets.com)
http://www.kdnuggets.com/2015/11/seven-steps-machine-learning-python.html
機(jī)器學(xué)習(xí)的一個(gè)簡(jiǎn)例(nbviewer.jupyter.org)
http://nbviewer.jupyter.org/github/rhiever/Data-Analysis-and-Machine-Learning-Projects/blob/master/example-data-science-notebook/Example Machine Learning Notebook.ipynb
2炉媒、實(shí)例
小白如何用python實(shí)現(xiàn)感知器算法(machinelearningmastery.com)
http://machinelearningmastery.com/implement-perceptron-algorithm-scratch-python/
小學(xué)生用python實(shí)現(xiàn)一個(gè)神經(jīng)網(wǎng)絡(luò)(wildml.com)
http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/
只用11行python代碼實(shí)現(xiàn)一個(gè)神經(jīng)網(wǎng)絡(luò)算法(iamtrask.github.io)
http://iamtrask.github.io/2015/07/12/basic-python-network/
自己動(dòng)手用ptython實(shí)現(xiàn)最近鄰算法(kdnuggets.com)
http://www.kdnuggets.com/2016/01/implementing-your-own-knn-using-python.html
python實(shí)現(xiàn)長(zhǎng)短期記憶網(wǎng)絡(luò)的記憶機(jī)制(machinelearningmastery.com)
http://machinelearningmastery.com/memory-in-a-long-short-term-memory-network/
如何用長(zhǎng)短期記憶遞歸神經(jīng)網(wǎng)絡(luò)輸出隨機(jī)整數(shù)(machinelearningmastery.com)
如何用seq2seq遞歸神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)加法運(yùn)算(machinelearningmastery.com)
http://machinelearningmastery.com/learn-add-numbers-seq2seq-recurrent-neural-networks/
3、Scipy 和 numpy
Scipy課程筆記(scipy-lectures.org)
http://www.scipy-lectures.org/
Python Numpy 教程(Stanford CS231n)
http://cs231n.github.io/python-numpy-tutorial/
Numpy 與 Scipy 入門(mén)(UCSB CHE210D)
https://engineering.ucsb.edu/~shell/che210d/numpy.pdf
給科學(xué)家看的Python微課程(nbviewer.jupyter.org)
http://nbviewer.jupyter.org/gist/rpmuller/5920182#ii.-numpy-and-scipy
4昆烁、scikit-learn
PyCon會(huì)議上的Scik-learn 教程(nbviewer.jupyter.org)
http://nbviewer.jupyter.org/github/jakevdp/sklearn_pycon2015/blob/master/notebooks/Index.ipynb
Scikit-learn 中的分類(lèi)算法(github.com/mmmayo13)
https://github.com/mmmayo13/scikit-learn-classifiers/blob/master/sklearn-classifiers-tutorial.ipynb
Scikit-learn教程(scikit-learn.org)
http://scikit-learn.org/stable/tutorial/index.html
簡(jiǎn)明版Scikit-learn教程(github.com/mmmayo13)
https://github.com/mmmayo13/scikit-learn-beginners-tutorials
5吊骤、Tensorflow
Tensorflow教程(tensorflow.org)
https://www.tensorflow.org/tutorials/
Tensorflow入門(mén)--CPU vs GPU
https://medium.com/@erikhallstrm/hello-world-tensorflow-649b15aed18c
Tensorflow入門(mén)(metaflow.fr)
https://blog.metaflow.fr/tensorflow-a-primer-4b3fa0978be3
Tensorflow實(shí)現(xiàn)RNNs (wildml.com)
http://www.wildml.com/2016/08/rnns-in-tensorflow-a-practical-guide-and-undocumented-features/
Tensorflow實(shí)現(xiàn)文本分類(lèi)CNN模型(wildml.com)
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/
如何用Tensorflow做文本摘要(surmenok.com)
http://pavel.surmenok.com/2016/10/15/how-to-run-text-summarization-with-tensorflow/
6、PyTorch
Pytorch教程(pytorch.org)
Pytorch快手入門(mén) (gaurav.im)
http://blog.gaurav.im/2017/04/24/a-gentle-intro-to-pytorch/
利用Pytorch深度學(xué)習(xí)教程(iamtrask.github.io)
https://iamtrask.github.io/2017/01/15/pytorch-tutorial/
Pytorch實(shí)戰(zhàn)(github.com/jcjohnson)
https://github.com/jcjohnson/pytorch-examples
PyTorch 教程(github.com/MorvanZhou)
https://github.com/MorvanZhou/PyTorch-Tutorial
深度學(xué)習(xí)研究人員看的PyTorch教程(github.com/yunjey)
https://github.com/yunjey/pytorch-tutorial
數(shù)學(xué)
1静尼、機(jī)器學(xué)習(xí)中的數(shù)學(xué) (ucsc.edu)
https://people.ucsc.edu/~praman1/static/pub/math-for-ml.pdf
機(jī)器學(xué)習(xí)數(shù)學(xué)基礎(chǔ)(UMIACS CMSC422)
http://www.umiacs.umd.edu/~hal/courses/2013S_ML/math4ml.pdf
2白粉、線(xiàn)性代數(shù)
線(xiàn)性代數(shù)簡(jiǎn)明指南(betterexplained.com)
https://betterexplained.com/articles/linear-algebra-guide/
碼農(nóng)眼中矩陣乘法 (betterexplained.com)
https://betterexplained.com/articles/matrix-multiplication/
理解叉乘運(yùn)算(betterexplained.com)
https://betterexplained.com/articles/cross-product/
理解點(diǎn)乘運(yùn)算(betterexplained.com)
https://betterexplained.com/articles/vector-calculus-understanding-the-dot-product/
機(jī)器學(xué)習(xí)中的線(xiàn)性代數(shù)(U. of Buffalo CSE574)
http://www.cedar.buffalo.edu/~srihari/CSE574/Chap1/LinearAlgebra.pdf
深度學(xué)習(xí)的線(xiàn)代小抄(medium.com)
https://medium.com/towards-data-science/linear-algebra-cheat-sheet-for-deep-learning-cd67aba4526c
復(fù)習(xí)線(xiàn)性代數(shù)與課后閱讀材料(Stanford CS229)
http://cs229.stanford.edu/section/cs229-linalg.pdf
3、概率論
貝葉斯理論 (betterexplained.com)
https://betterexplained.com/articles/understanding-bayes-theorem-with-ratios/
理解貝葉斯概率理論(Stanford CS229)
http://cs229.stanford.edu/section/cs229-prob.pdf
復(fù)習(xí)機(jī)器學(xué)習(xí)中的概率論(Stanford CS229)
https://see.stanford.edu/materials/aimlcs229/cs229-prob.pdf
概率論(U. of Buffalo CSE574)
http://www.cedar.buffalo.edu/~srihari/CSE574/Chap1/Probability-Theory.pdf
機(jī)器學(xué)習(xí)中的概率論(U. of Toronto CSC411)
http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/tutorial1.pdf
4鼠渺、計(jì)算方法(Calculus)
如何理解導(dǎo)數(shù):求導(dǎo)法則鸭巴,指數(shù)和算法(betterexplained.com)
如何理解導(dǎo)數(shù),乘法系冗,冪指數(shù)奕扣,鏈?zhǔn)椒?betterexplained.com)
https://betterexplained.com/articles/derivatives-product-power-chain/
向量計(jì)算,理解梯度(betterexplained.com)
https://betterexplained.com/articles/vector-calculus-understanding-the-gradient/
微分計(jì)算(Stanford CS224n)
http://web.stanford.edu/class/cs224n/lecture_notes/cs224n-2017-review-differential-calculus.pdf
計(jì)算方法概論(readthedocs.io)