- matrix
- y<-matrix(c(1,2,3,4),nrow=2,ncol=2)
- y
- 1 3
- 2 4
- y<-matrix(c(1,2,3,4),nrow=2) # same as above
- y[,2] # 3 4
- y[1,1]<-1
- y[2,1]<-2
- matrix operation
- y%*%y # 7=1*1+2*3... matrix multiplication
- 7 15
- 10 22
- y*y
- 1 9
- 4 16
- 3*y
- 3 9
- 6 12
- z=matrix(c(1,2,3,4,1,1,0,0,1,0,1,0),nrow=4)
- z[,2:3] # 1 1 0 0 1 0 1 0
- z[1:2,] # 1 2 1 1 1 0
- z[1:2,2] # 1 1
- y<-matrix(c(1,2,3,4,5,6),nrow=3)
- y
- 1 4
- 2 5
- 3 6
- y[c(1,3),]<-matrix(c(1,1,8,12),nrow=2)
- y
- 1 8
- 2 5
- 1 12
- x<-matrix(nrow=3,ncol=3)
- y<-matrix(c(4,5,2,3),nrow=2)
- x[2:3,2:3]<-y
- x
- NA NA NA
- NA 4 2
- NA 5 3
- y<-matrix(c(1,2,3,4,5,6),nrow=3)
- y[-2,]
- 1 4
- 3 6
- pixmap example
- library(pixmap)
- mtrush1<-read.pnm("mtrush1.pgm")
- mtrush1@grey[28,88] # 0.796 using @ visit component in S4 type
- mtrush1@grey[84:163,135:177]<-1 # cover a white rectangle
- plot(mtrush1)
- filter
- x<-matrix(c(1,2,3,2,3,4),nrow=3)
- x[x[,2]>=3,] # remove rows whose col2<3
- 2 3
- 3 4
- j<-x[,2]>=3
- x[j,] # same as above
- m=matrix(c(1,2,3,4,5,6),nrow=3)
- 1 4
- 2 5
- 3 6
- m[m[,1]>1 & m[,2]>5,] # 3 6 pick rows that col 1>1 and col 2>5,only row 3 fits
- m=matrix(c(5,2,9,-1,10,11),nrow=3)
- m
- 5 -1
- 2 10
- 9 11
- which(m>2) # 1(5) 3(9) 5(10) 6(11)
- row(m) # so as col() function
- 1 1
- 2 2
- 3 3
- z=matrix(c(1,2,3,4,5,6),nrow=3)
- apply(z,2,mean) # parameter 2 means from column view, 1 means row view
- 2 5
- f<-function(x) x/c(2,8)
- y<-apply(z,1,f) # z is 3*2, but y is 2*3
- y
- 0.5 1.000 1.50
- 0.5 0.625 0.75
findols<-function(x) {
findol<-function(xrow) {
mdn<-median(xrow)
devs<-abs(xrow-mdn)
return(which.max(devs)) # return index of max devs
}
return(apply(x,1,findol))
}
- add & remove
- x<-c(x,20) # append 20
- x<-c(x[1:3],20,x[4:6]) # insert 20 into 4th place
- x<-x[-2:-4] # remove 2,3,4
- one<-rep(1,4)
- z<-matrix(c(1,2,3,4,1,1,0,0,1,0,1,0),nrow=4)
- cbind(one,z) # column bind
- 1 1 1 1
- 1 2 1 0
- 1 3 0 1
- 1 4 0 0
- cbind(1,z) # same as above, cycling pad
- q<-cbind(c(1,2),c(3,4))
- 1 3
- 2 4
- miscellaneous
- z<-matrix(1:8,nrow=4)
- z
- 1 5
- 2 6
- 3 7
- 4 8
- length(z) # 8
- class(z) # "matrix"
- attributes(z)
- $dim
- 4 2
- dim(z) # 4 2
- nrow(z) # 4
- ncol(z) # 2
- r<-z[2,] # r is a vector not a matrix, wrong way
- attributes(r) # NULL
- r<-z[2,, drop=FALSE] # right way
- dim(r) # 1 2
- "["(z,3,2) # same as z[3,2] 7
- u<-1:3
- v<-as.matrix(u) # another right way
- attributes(v)
- $dim
- 3 1
- z<-matrix(c(1,2,3,4),nrow=2)
- colnames(z) # NULL
- colnames(z)<-c("a","b")
- z
- a b
- 1 3
- 2 4
- first
- 46 30
- 21 25
- 50 48
- second
- 46 43
- 41 35
- 50 49
- tests<-array(data=c(first,second),dim=c(3,2,2)) # high dimension array
- attributes(tests)
- $dim
- 3 2 2
- tests[3,2,1] # 48, student 3 in first test 2 part's score