懂你英語 Level6 Unit2 Part4 Listening - Dependency Ratio

In?economics, the?dependency ratio?shows the relationship between the number of people not in the labor force, and those in the labor force.

Those not in the labor force are the?dependent part of the population.

Those in the labor force are the?productive part of the population.

A high?dependency?ratio means that there are fewer working people to support?health,?social security?and?education services, which are used by the dependent?sectors of a population.

This number is calculated by adding together the total number of young and old people and dividing that number by the number of working age people.


Sometimes the dependency ratio is presented in two parts.

One part focuses on the ratio between children and the working age population.

This is the dependency ratio for the young.

The other is the ratio between the elderly and the working age population, which is the dependency ratio for the old.

Here are some dependency ratios for the old in five countries: China, India, Japan, the US and?the UK.

It shows the ratios at 3 different points of time: 2000, 2015, and 2050.

Note that the greatest percentage change from 2015 to 2050 is for China.

The?dependency ratio nearly?triples, from 13.1 to 39.

The other countries show gains, but as a percentage increase, they are less.

In Japan, the ratio increases from 43.6 to 71.8, which is less than double.


The life expectancy for Japan in 2050, is predicted to be 93, which is the highest of these countries.

A high life expectancy obviously increases the dependency ratio.

And note that the dependency ratio?ignores the fact that those counted in the elderly segment of a population are not necessarily dependent.

An increasing?proportion of them are working and many of those in the working age segment may not be working.

So this way of calculating the dependency ratio in a country can be misleading.

By pointing this out, we can see the danger of using such numbers to make policy without understanding how they are calculated.

In the end, details are important.


(The dependency ratio shows the relationship between the dependent and productive parts of a population.)

(When using numbers like dependency ratios, one needs to understand how they are calculated.)

(One reason the population of children isn't growing is because of very low birth rates in developed countries.)

(The unemployment rate isn't taken into account, so the dependency ratio doesn't change.)

(It's the labor force that supports all the government?expenditures, including health,?social security?and education.)

(In percentage terms, China's dependency ratio is expected to nearly triple.)

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末倘要,一起剝皮案震驚了整個(gè)濱河市菇爪,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌著榴,老刑警劉巖,帶你破解...
    沈念sama閱讀 222,627評(píng)論 6 517
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件元莫,死亡現(xiàn)場離奇詭異呜师,居然都是意外死亡,警方通過查閱死者的電腦和手機(jī)双炕,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 95,180評(píng)論 3 399
  • 文/潘曉璐 我一進(jìn)店門狞悲,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人妇斤,你說我怎么就攤上這事摇锋。” “怎么了站超?”我有些...
    開封第一講書人閱讀 169,346評(píng)論 0 362
  • 文/不壞的土叔 我叫張陵荸恕,是天一觀的道長。 經(jīng)常有香客問我顷编,道長戚炫,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 60,097評(píng)論 1 300
  • 正文 為了忘掉前任媳纬,我火速辦了婚禮双肤,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘钮惠。我一直安慰自己茅糜,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 69,100評(píng)論 6 398
  • 文/花漫 我一把揭開白布素挽。 她就那樣靜靜地躺著蔑赘,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上缩赛,一...
    開封第一講書人閱讀 52,696評(píng)論 1 312
  • 那天耙箍,我揣著相機(jī)與錄音,去河邊找鬼酥馍。 笑死辩昆,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的旨袒。 我是一名探鬼主播汁针,決...
    沈念sama閱讀 41,165評(píng)論 3 422
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼砚尽!你這毒婦竟也來了施无?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 40,108評(píng)論 0 277
  • 序言:老撾萬榮一對(duì)情侶失蹤必孤,失蹤者是張志新(化名)和其女友劉穎猾骡,沒想到半個(gè)月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體隧魄,經(jīng)...
    沈念sama閱讀 46,646評(píng)論 1 319
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡卓练,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 38,709評(píng)論 3 342
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了购啄。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片襟企。...
    茶點(diǎn)故事閱讀 40,861評(píng)論 1 353
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖狮含,靈堂內(nèi)的尸體忽然破棺而出顽悼,到底是詐尸還是另有隱情,我是刑警寧澤几迄,帶...
    沈念sama閱讀 36,527評(píng)論 5 351
  • 正文 年R本政府宣布蔚龙,位于F島的核電站,受9級(jí)特大地震影響映胁,放射性物質(zhì)發(fā)生泄漏木羹。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 42,196評(píng)論 3 336
  • 文/蒙蒙 一解孙、第九天 我趴在偏房一處隱蔽的房頂上張望坑填。 院中可真熱鬧,春花似錦弛姜、人聲如沸脐瑰。這莊子的主人今日做“春日...
    開封第一講書人閱讀 32,698評(píng)論 0 25
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽苍在。三九已至绝页,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間寂恬,已是汗流浹背续誉。 一陣腳步聲響...
    開封第一講書人閱讀 33,804評(píng)論 1 274
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留初肉,地道東北人屈芜。 一個(gè)月前我還...
    沈念sama閱讀 49,287評(píng)論 3 379
  • 正文 我出身青樓,卻偏偏與公主長得像朴译,于是被迫代替她去往敵國和親。 傳聞我的和親對(duì)象是個(gè)殘疾皇子属铁,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 45,860評(píng)論 2 361

推薦閱讀更多精彩內(nèi)容