圖像的二值化
圖像二值化就是將圖像上的像素點(diǎn)的灰度值設(shè)置為0或255扼仲,也就是將整個(gè)圖像呈現(xiàn)出明顯的黑白效果顺献。
將256個(gè)亮度等級(jí)的灰度圖像通過適當(dāng)?shù)拈撝颠x取而獲得仍然可以反映圖像整體和局部特征的二值化圖像。在數(shù)字圖像處理中,二值圖像占有非常重要的地位,首先救巷,圖像的二值化有利于圖像的進(jìn)一步處理默责,使圖像變得簡(jiǎn)單贬循,而且數(shù)據(jù)量減小,能凸顯出感興趣的目標(biāo)的輪廓桃序。其次杖虾,要進(jìn)行二值圖像的處理與分析,首先要把灰度圖像二值化媒熊,得到二值化圖像奇适。
在實(shí)際應(yīng)用中,很多圖像的分析最終都轉(zhuǎn)換為二值圖像的分析泛释,比如:醫(yī)學(xué)圖像分析滤愕、前景檢測(cè)、字符識(shí)別怜校,形狀識(shí)別间影。二值化+數(shù)學(xué)形態(tài)學(xué)能解決很多計(jì)算機(jī)識(shí)別工程中目標(biāo)提取的問題。
開操作演示---文本分離與切割
開操作是先腐蝕后膨脹的過程茄茁。用來消除小物體魂贬、在纖細(xì)點(diǎn)處分離物體、平滑較大物體的邊界的同時(shí)并不明顯改變其面積裙顽。
跟開操作相對(duì)應(yīng)的是閉操作付燥。另外,腐蝕和膨脹在下文中有介紹愈犹。
在 cv4j 中键科,我們封裝好了這些形態(tài)學(xué)的常用操作,比如開閉操作漩怎、腐蝕和膨脹等等勋颖。
其中,開操作的代碼如下:
public class MorphOpen {
/**
* in order to remove litter noise block, erode + dilate operator
*
* @param binary
* @param structureElement
*/
public void process(ByteProcessor binary, Size structureElement) {
Erode erode = new Erode();
Dilate dilate = new Dilate();
erode.process(binary, structureElement);
dilate.process(binary, structureElement);
}
}
先來看一個(gè)完整demo的效果圖
第三步如果看不太清楚勋锤,我們看一下放大的效果圖
如上圖所示叁执,demo完成了文本的切割。我們來看看具體的代碼是怎么實(shí)現(xiàn)的谈宛。
準(zhǔn)備工作展示原圖
Resources res = getResources();
final Bitmap bitmap = BitmapFactory.decodeResource(res, R.drawable.test_binary1);
image0.setImageBitmap(bitmap);
第一步二值化
CV4JImage cv4JImage = new CV4JImage(bitmap);
Threshold threshold = new Threshold();
threshold.process((ByteProcessor)(cv4JImage.convert2Gray().getProcessor()),Threshold.THRESH_TRIANGLE,Threshold.METHOD_THRESH_BINARY_INV,255);
image1.setImageBitmap(cv4JImage.getProcessor().getImage().toBitmap());
第二步開操作
MorphOpen morphOpen = new MorphOpen();
cv4JImage.resetBitmap();
morphOpen.process((ByteProcessor)cv4JImage.getProcessor(),new Size(5));
image2.setImageBitmap(cv4JImage.getProcessor().getImage().toBitmap());
第三步連通組件標(biāo)記
ConnectedAreaLabel connectedAreaLabel = new ConnectedAreaLabel();
byte[] mask = new byte[cv4JImage.getProcessor().getWidth() * cv4JImage.getProcessor().getHeight()];
List<Rect> rectangles = new ArrayList<>();
connectedAreaLabel.process((ByteProcessor)cv4JImage.getProcessor(),mask,rectangles,true);
cv4JImage.resetBitmap();
Bitmap newBitmap = cv4JImage.getProcessor().getImage().toBitmap();
if (Preconditions.isNotBlank(rectangles)) {
Tools.drawRects(newBitmap,rectangles);
}
image3.setImageBitmap(newBitmap);
其實(shí)次哈,做完第三步再結(jié)合ocr就可以識(shí)別出具體文字啦。如果再結(jié)合一下網(wǎng)絡(luò)爬蟲的話吆录,意義更大亿乳。
雖然, cv4j 目前還只是移動(dòng)端的庫,但是它畢竟是java開發(fā)的葛假,改成適合desktop的很容易。
腐蝕操作演示---硬幣計(jì)數(shù)
腐蝕操作是一種消除邊界點(diǎn)滋恬,使邊界向內(nèi)部收縮的過程聊训』致龋可以用來消除小且無意義的物體带斑。腐蝕操作掃描圖像的每一個(gè)像素勋磕,用結(jié)構(gòu)元素與其覆蓋的二值圖像做“與”操作:如果都為1,結(jié)果圖像的該像素為1敢靡,否則為0。
跟腐蝕操作相對(duì)的是膨脹操作啸胧。腐蝕用于分割獨(dú)立的圖像元素赶站,而膨脹用于連接相鄰的元素。
腐蝕的算法:
其中纺念,g(x,y)為腐蝕后的灰度圖像贝椿,f(x,y)為原灰度圖像烙博,B為結(jié)構(gòu)元素焙格。腐蝕運(yùn)算是由結(jié)構(gòu)元素確定的鄰域塊中選取圖像值與結(jié)構(gòu)元素值的差的最小值。
可以簡(jiǎn)化為:
來看一個(gè)例子肝陪,原圖中有很多硬幣蹲堂,通過一步步的分析計(jì)算出硬幣的個(gè)數(shù)播聪。
準(zhǔn)備工作展示原圖
Resources res = getResources();
final Bitmap bitmap = BitmapFactory.decodeResource(res, R.drawable.test_coins);
image0.setImageBitmap(bitmap);
第一步二值化
CV4JImage cv4JImage = new CV4JImage(bitmap);
Threshold threshold = new Threshold();
threshold.process((ByteProcessor)(cv4JImage.convert2Gray().getProcessor()),Threshold.THRESH_OTSU,Threshold.METHOD_THRESH_BINARY_INV,255);
image1.setImageBitmap(cv4JImage.getProcessor().getImage().toBitmap());
第二步腐蝕操作
Erode erode = new Erode();
cv4JImage.resetBitmap();
erode.process((ByteProcessor)cv4JImage.getProcessor(),new Size(3),10);
image2.setImageBitmap(cv4JImage.getProcessor().getImage().toBitmap());
第三步連通組件標(biāo)記
ConnectedAreaLabel connectedAreaLabel = new ConnectedAreaLabel();
byte[] mask = new byte[cv4JImage.getProcessor().getWidth() * cv4JImage.getProcessor().getHeight()];
int num = connectedAreaLabel.process((ByteProcessor)cv4JImage.getProcessor(),mask,null,false); // 獲取連通組件的個(gè)數(shù)
SparseIntArray colors = new SparseIntArray();
Random random = new Random();
int height = cv4JImage.getProcessor().getHeight();
int width = cv4JImage.getProcessor().getWidth();
int size = height * width;
for (int i = 0;i<size;i++) {
int c = mask[i] & 0xff;
colors.put(c,Color.argb(255, random.nextInt(255),random.nextInt(255),random.nextInt(255)));
}
cv4JImage.resetBitmap();
Bitmap newBitmap = cv4JImage.getProcessor().getImage().toBitmap();
for(int row=0; row<height; row++) {
for (int col = 0; col < width; col++) {
int c = mask[row*width+col] & 0xff;
if (c>0) {
newBitmap.setPixel(col,row,colors.get(c));
}
}
}
image3.setImageBitmap(newBitmap);
if (num>0)
numTextView.setText(String.format("總計(jì)識(shí)別出%d個(gè)硬幣",num));
最終獲取了連通組件的個(gè)數(shù)也就是硬幣的個(gè)數(shù)稼虎,并且在已經(jīng)識(shí)別的硬幣上隨機(jī)著色。
總結(jié)
cv4j 是gloomyfish和我一起開發(fā)的圖像處理庫计济,純java實(shí)現(xiàn)茸苇,目前還處于早期的版本。這周沦寂,我們開始做二值圖像的分析(腐蝕传藏、膨脹腻暮、開閉操作、輪廓提取等等)毯侦,這個(gè)模塊并沒有完成全部功能哭靖,預(yù)計(jì)下周能完工试幽。
先前的文章:
Java實(shí)現(xiàn)高斯模糊和圖像的空間卷積
Java實(shí)現(xiàn)圖片濾鏡的高級(jí)玩法
Java實(shí)現(xiàn)圖片的濾鏡效果