原文鏈接:https://blog.csdn.net/xd_wjc/article/details/82999563
https://blog.csdn.net/qq_25241325/article/details/90753830
更新:安裝keras時要與tensorflow版本對應(yīng)https://www.cnblogs.com/carle-09/p/11661261.html
一蒂教、安裝驅(qū)動
已經(jīng)安裝的跳過
二、安裝cuda-9.0
注意吨灭,如果是ubuntu18.04,必須把gcc版本降到6以下鳄炉,包括6变秦,因?yàn)榫幾gcuda9只支持gcc6以下壳嚎,而Ubuntu 18.04預(yù)裝GCC版本為7.3,如何降gcc:
sudo apt-get install gcc-6 g++-6
cd /usr/bin
sudo rm gcc
sudo ln -s gcc-6 gcc
sudo rm g++
sudo ln -s g++-6 g++
如果是ubuntu16.04凌外,就不用降gcc辩尊,因?yàn)閡buntu16.04預(yù)裝的是gcc4.8
安裝cuda9:
1,執(zhí)行這條命令,先安裝依賴庫康辑,最好安摄欲,有的教程沒安轿亮,我第一次失敗不知道跟這個有沒有關(guān)系,也不大胸墙,就幾十MB
sudo apt-get install g++ freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libglu1-mesa libglu1-mesa-dev
2我注,自己去官網(wǎng)下載cuda9的run-file文件,幾個補(bǔ)丁就不用下了迟隅,我看網(wǎng)上教程大部分都沒裝這幾個補(bǔ)丁但骨,
我下好的文件名叫作:cuda_9.0.176_384.81_linux.run
384.81表示需要的驅(qū)動版本,所以你前面裝得nivdia驅(qū)動版本必須比這個384.81要大智袭,不能小于或等于這個384.81
在cuda_9.0.176_384.81_linux.run這個文件所在目錄下打開終端奔缠,執(zhí)行:
sudo sh cuda_9.0.176_384.81_linux.run
我看其他教程還加什么權(quán)限,我感覺不要吼野,反正我沒加
3校哎,之后會進(jìn)入一系列讓你閱讀的一些安裝信息的界面,你不停的回車就行瞳步,直到出現(xiàn)如下信息:
這個是我網(wǎng)上復(fù)制的闷哆,實(shí)際上自己裝的時候基本是一樣的,答案都寫出來了单起,大部分是yes阳准,但這一項(xiàng)Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 384.81?選no,因?yàn)樯厦骝?qū)動已經(jīng)裝了馏臭,這里就不用重復(fù)裝。
1 The NVIDIA CUDA Toolkit provides command-line and graphical
2 tools for building, debugging and optimizing the performance
3 of applications accelerated by NVIDIA GPUs, runtime and math
4 libraries, and documentation including programming guides,
5 user manuals, and API references.
6
7
8 Default Install Location of CUDA Toolkit
9 Do you accept the previously read EULA?
10 accept/decline/quit: accept
11
12 You are attempting to install on an unsupported configuration. Do you wish to continue?
13 (y)es/(n)o [ default is no ]: y
14
15 Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 384.81?
16 (y)es/(n)o/(q)uit: n
17
18 Install the CUDA 9.0 Toolkit?
19 (y)es/(n)o/(q)uit: y
20
21 Enter Toolkit Location
22 [ default is /usr/local/cuda-9.0 ]:
23
24 Do you want to install a symbolic link at /usr/local/cuda?
25 (y)es/(n)o/(q)uit: y
26
27 Install the CUDA 9.0 Samples?
28 (y)es/(n)o/(q)uit: y
29
30 Enter CUDA Samples Location
31 [ default is /home/zhuang ]:
32
33 Installing the CUDA Toolkit in /usr/local/cuda-9.0 ...
34 Installing the CUDA Samples in /home/zhuang ...
35 Copying samples to /home/zhuang/NVIDIA_CUDA-9.0_Samples now...
36 Finished copying samples.
37
38 ===========
39 = Summary =
40 ===========
41
42 Driver: Not Selected
43 Toolkit: Installed in /usr/local/cuda-9.0
44 Samples: Installed in /home/zhuang
45
46 Please make sure that
47 - PATH includes /usr/local/cuda-9.0/bin
48 - LD_LIBRARY_PATH includes /usr/local/cuda-9.0/lib64, or, add /usr/local/cuda-9.0/lib64 to /etc/ld.so.conf and run ldconfig as root
49
50 To uninstall the CUDA Toolkit, run the uninstall script in /usr/local/cuda-9.0/bin
51
52 Please see CUDA_Installation_Guide_Linux.pdf in /usr/local/cuda-9.0/doc/pdf for detailed information on setting up CUDA.
53
54 ***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 384.00 is required for CUDA 9.0 functionality to work.
55 To install the driver using this installer, run the following command, replacing <CudaInstaller> with the name of this run file:
56 sudo <CudaInstaller>.run -silent -driver
57
58 Logfile is /tmp/cuda_install_7476.log
59 Signal caught, cleaning up
到這cuda安裝第一步完成讼稚,接著添加環(huán)境變量括儒,
在home主目錄下,用ctrl+h锐想,顯示隱藏文件帮寻,找到.bashrc這個文件,用vim或gedit打開赠摇,命令如下:
gedit ~/.bashrc
在文件的末尾添加這三行固逗,有的教程第三行好像沒裝:
export PATH=/usr/local/cuda-9.0/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64:$LD_LIBRARY_PATH
export CUDA_HOME=/usr/local/cuda-9.0
添加后保存,在執(zhí)行:
source ~/.bashrc
使這個文件生效藕帜,可以在終端輸入 echo $PATH 和echo $CUDA_HOME查看一下
有的教程是這樣添加環(huán)境變量的烫罩,都可以,只是格式不一樣
export PATH=/usr/local/cuda-9.0/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
注意由于安裝的時候建立了軟鏈接/usr/local/cuda
和/usr/local/cuda-9.0其實(shí)是等效的洽故,你添加那樣的環(huán)境變量也是可以的贝攒,但是要和下面的cudnn拷貝的一樣,你這里選擇是用cuda9.0做環(huán)境變量时甚,后面最好把cudnn的幾個文件拷到這里
驗(yàn)證cuda9.0:
a隘弊、 驗(yàn)證驅(qū)動版本
$ cat /proc/driver/nvidia/version
結(jié)果顯示類似
NVRM version: NVIDIA UNIX x86_64 Kernel Module 384.81 Sat Sep 2 02:43:11 PDT 2017
GCC version: gcc version 5.4.0 20160609 (Ubuntu 5.4.0-6ubuntu1~16.04.5)
b哈踱、 驗(yàn)證CUDA Toolkit
$ nvcc -V? ? ? 會輸出CUDA的版本信息
如果是這樣的:
The program 'nvcc' is currently not installed. You can install it by typing:
sudo apt-get install nvidia-cuda-toolkit
可能是環(huán)境配置沒有成功,重新配置環(huán)境梨熙。
五开镣、測試CUDA的Samples例子
cd? /usr/local/cuda-9.0/samples/1_Utilities/deviceQuery
sudo make
./deviceQuery
如果顯示的是關(guān)于GPU的信息,則說明安裝成功了咽扇。
第三:安裝cudnn:
去cudnn官網(wǎng)下載于cuda9.0對應(yīng)的cudnn邪财,一般下7.0,7.0.5或7.0.4或7.0.3都是可以的肌割,下那個cudnn libaray for linux卧蜓,
不要下下面的什么cudnn for ubuntu 16.04 的deb文件,下好之后把敞,是一個cudnn-9.0-linux-x64-v7.tgz壓縮文件弥奸,首先到文件目錄打開終端執(zhí)行這條命令解壓:tar -zxvf cudnn-9.0-linux-x64-v7.tgz? 解壓后出現(xiàn)一個cuda的文件夾,
cuda文件夾里有:
還是回到解壓出來的cuda文件夾所在目錄奋早,在把cudnn.h 和那三個所有帶libcudnn的文件復(fù)制到開始裝的CUDA文件夾對應(yīng)的目錄里去
??? sudo cp cuda/include/cudnn.h /usr/local/cuda-9.0/include/
? ? sudo cp -P cuda/lib64/libcudnn* /usr/local/cuda-9.0/lib64/
? ? 這個-P是參數(shù)盛霎,意思是不光復(fù)制內(nèi)容,還把屬性也復(fù)制過去
??? 給文件讀寫權(quán)限耽装,因?yàn)閺纳厦娴膱D片可以看出cudnn上了鎖愤炸,要賦予權(quán)限:
? ? sudo chmod a+r /usr/local/cuda-9.0/include/cudnn.h
? ? sudo chmod a+r /usr/local/cuda-9.0/lib64/libcudnn*
? ? ------簡單一點(diǎn)
? ? tar -zxvf cudnn-9.0-linux-x64-v7.tgz
? ? sudo cp cuda/include/cudnn.h /usr/local/cuda-9.0/include
? ? sudo cp cuda/lib64/libcudnn* /usr/local/cuda-9.0/lib64
? ? sudo chmod a+r /usr/local/cuda-9.0/include/cudnn.h /usr/local/cuda-9.0/lib64/libcudnn*
到次結(jié)束cudnn安裝
第四安裝Anaconda:
1. 首先安裝Anaconda3-4.2.0-Linux-x86_64,64位系統(tǒng),它對應(yīng)的python是3.5,而4.3對應(yīng)的是python3.6,下好后是一個.sh文件
參考下面這個鏈接
https://blog.csdn.net/u012318074/article/details/77074665
第五步安裝tensorflow:
我這里裝的是1.8掉奄,想裝1.12规个,就換成1.12
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow-gpu==1.8
用清華的鏡像,飛快姓建。
第六步诞仓,安裝opencv,keras速兔,easydict:
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-python==3.4
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple keras
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple easydict
要是還是提示缺少某些包墅拭,就用這種方式安裝
測試TensorFlow(GPU)是否安裝成功
在安裝完TensorFlow(GPU)后,進(jìn)入python環(huán)境
在命令窗口輸入以下的代碼段:
? ? import tensorflow as tf
? ? hello=tf.constant(‘hello,world’)
? ? sess=tf.Session()
? ? print(sess.run(hello))
如果返回結(jié)果如下圖涣狗,則代表TensorFlow(GPU)安裝成功: