省心省事的植物miRNA分析軟件miR-PREFeR,值得擁有

最近在做某個植物小物種的miRNA分析师逸,看過幾個公司的miRNA分析報告和文獻后開始動手年栓。大概分以下幾步:
1坷虑、篩選出目標miRNA
(a)根據(jù)長度篩選clean data(植物18~30nt)
(b)比對到參考基因組上卸察,去除未匹配序列
(c)比對到Rfam中的ncRNA既忆,去除snRNA柠座,snoRNA邑雅,rRNA,tRNA等
(d)去除重復序列
2妈经、保守miRNA的鑒定(與mirbase數(shù)據(jù)庫比對)
3淮野、新miRNA的預測
4、差異表達(和mRNA流程類似)
5吹泡、靶基因的預測(植物用psRNATarget在線分析)

這其中第4骤星、5步我比較熟悉,前三步稍微陌生一點爆哑。能找到軟件整合流程一步跑下來最好洞难,不行的話只能分步嘗試(第一步如果參考基因組注釋比較完整,還可以將sRNA比對到mRNA的外顯子和內(nèi)含子揭朝,找出來自mRNA降解片段的sRNA并去掉)廊营。

還好我找到了很好用的miR-PREFeR歪泳,分享在這里~·github主頁https://github.com/hangelwen/miR-PREFeR

miR-PREFeR: microRNA PREdiction From small RNAseq data

miR-PREFeR成功解決了植物miRNA分析中的幾大痛點:1. 假陽性高; 2. 耗時長; 3. work only for genomes in their databases; 4. 難用 (親身經(jīng)歷證明確實好用)。該軟件于14年發(fā)表在Bioinformatics上并仍在改進中 http://bioinformatics.oxfordjournals.org/content/30/19/2837.abstract.

pipline

1露筒、前期準備

安裝samtools

git clone git://github.com/samtools/samtools.git

安裝ViennaRNA ( 最好是1.8.5或2.1.2, 2.1.5版本)

#我裝的是最新版
wget https://www.tbi.univie.ac.at/RNA/download/sourcecode/2_4_x/ViennaRNA-2.4.10.tar.gz 
tar zvxf ViennaRNA-2.4.10.tar.gz
cd ViennaRNA-2.4.10
./configure --prefix="/user/tools/ViennaRNA/" --without-perl
make
make install

2呐伞、安裝

git clone https://github.com/hangelwen/miR-PREFeR.git

安裝很方便,可以在example里測試一下pipeline

3慎式、輸入數(shù)據(jù)處理

一共需要的輸入數(shù)據(jù)有三個:
參考基因組fasta文件
small RNAseq 數(shù)據(jù)比對基因組的sam文件(bowtie)
gff文件(可選伶氢,記錄需要被屏蔽掉的信息,比如重復序列)
其中在比對前瘪吏,需要把fasta處理一下癣防,samplename.txt里面記錄取樣信息:

$ vi samplename.txt
root #SAMPLE1.fasta
flower #SAMPLE2.fasta
salt #SAMPLE3.fasta
$ python scripts/process-reads-fasta.py samplename.txt SAMPLE1.fasta SAMPLE2.fasta SAMPLE3.fasta

得到 SAMPLE1.fasta.processed文件,>開頭包含sample name掌眠、sequential number和depth信息

$ less SAMPLE1.fasta.processed
>root_r0_x1  #sample name_sequential number_depth
ACTACTGCAAGGGCTGGCTCAACCCGC
>root_r1_x5
TGGTTGCTGTCGCTGGTCGCTGGT

4蕾盯、bowtie比對

python bowtie-align-reads.py -f -r TAIR10.fas -t bowtie-index/ -p 8 SAMPLE1.fasta.processed SAMPLE2.fasta.processed SAMPLE3.fasta.processed

生成pdep.chr1.sam,pind.chr1.sam蓝丙,cold.chr1.sam

5级遭、準備configuration文件

每個參數(shù)都有詳細說明

$more config.example
#example configuration file for the miR-PREFeR pipeline.
#lines start with '#' are comments

#miR-PREFeR path, please change to your path to the script folder. 
#Absolute path perfered.
PIPELINE_PATH = /sRNA/miR-PREFeR/

#Genomic sequence file in fasta format.  Absolute path perfered. If a path relative if used, it's relatvie to the working directory where you execute the pipeline.
FASTA_FILE =  ./TAIR10.chr1.fa

#Small RNA read alignment file in SAM format. The SAM file should contain the SAM header. If N samples are used, then N file names are listed here, separated by comma. please note that before doing alignment, process the reads fasta files using the provided script 'process-reads-fasta.py' to collapse and rename the reads. Absolute path perfered. If a path relative if used, it's relatvie to the working directory where you execute the pipeline.
ALIGNMENT_FILE = ./cold.chr1.sam, ./pdep.chr1.sam, ./pind.chr1.sam

#GFF file which list all existing annotations on genomic sequences FASTA_FILE. If no GFF file is availble, comment this line out or leave the value blank. Absolute path perfered. If a path relative if used, it's relatvie to the working directory where you execute the pipeline.
#CAUTION: please only list the CDS regions, not the entire miRNA region, because miRNAs could be in introns. This option is mutual exclusive with 'GFF_FILE_INCLUDE' option. If you have a GFF file that contains regions in which you want to predict whether they include miRNAs, please use the 'GFF_FILE_INCLUDE' option instead.
GFF_FILE_EXCLUDE = ./TAIR10.chr1.CDS.gff

# Only predict miRNAs from the regions given in the GFF file. This option is mutual exclusive with 'GFF_FILE_EXCLUDE'. Thus, only one of them can be used.
#GFF_FILE_INCLUDE = ./TAIR10.chr1.candidate.gff

#The max length of a miRNA precursor. The range is from 60 to 3000. The default is 300. 
PRECURSOR_LEN = 300

#The first step of the pipeline is to identify candidate regions of the miRNA loci. If READS_DEPTH_CUTOFF = N, then bases that the mapped depth is smaller than N is not considered. The value should >=2.
READS_DEPTH_CUTOFF = 20

#Number of processes for this computation. Using more processes speeds up the computation, especially if you have a multi-core processor. If you have N cores avalible for the  computation, it's better to set this value in the range of N to 2*N.
#If comment out or leave blank, 1 is used. 
NUM_OF_CORE = 4

#Outputfolder. If not specified, use the current working directory. Please make sure that you have enough disk space for the folder, otherwise the pipeline may fail.
OUTFOLDER = example-result

#Absolute path of the folder that contains intermidate/temperary files during the run of the pipeline. If not specified, miR-PREFeR uses a folder with suffix "_tmp" under OUTFOLDER by default. Please make sure that you have enough disk space for the folder, otherwise the pipeline may fail.
TMPFOLDER = /tmp/exmaple

#prefix for naming the output files. For portability, please DO NOT contain any spaces and special characters. The prefered includes 'A-Z', 'a-z', '0-9', and underscore '_'.
NAME_PREFIX = TAIR10-example

#Maximum gap length between two contigs to form a candidate region. 
MAX_GAP = 100

# Minimum and maximum length of the mature sequence. Default values are 18 and 24.
MIN_MATURE_LEN = 18
MAX_MATURE_LEN = 24

# If this is 'Y', then the criteria that requries the star sequence must be expressed  is loosed if the expression pattern is good enough (.e.g. the majority of the reads  mapped to the region are mapped to the mature position.). There are lots of miRNAs  which do not have star sequence expression. The default value is Y.
ALLOW_NO_STAR_EXPRESSION = Y

# In most cases, the mature star duplex has 2nt 3' overhangs. If this is set to 'Y', then 3nt overhangs are allowed. Default is 'N'.
ALLOW_3NT_OVERHANG = N

#The pipeline makes a checkpoint after each major step. In addition, because the folding stage is the most time consuming stage, it makes a checkpiont for each folding process after folding every CHECKPOINT_SIZE sequences. If the pipeline is killed for some reason in the middle of folding, it can be restarted using
#'recover' command from where it was stopped. The default value is 3000. On my system this means making a checkpoint about every 5 minutes.
CHECKPOINT_SIZE = 3000

6、跑流程

python miR_PREFeR.py -L -k pipeline configfile

pipeline里包含prepare, candidate, fold, predict四步渺尘。如果某步中斷了挫鸽,還可以續(xù)跑

python miR_PREFeR.py -L recover configfile

7、輸出結(jié)果

result文件夾里包含如下文件:
主要信息都在html里可視化了

html里看更直觀鸥跟,有二級結(jié)構序列丢郊,各個樣品比對信息統(tǒng)計
TAIR10-example_miRNA.detail示例

吐槽幾個大坑:

mirdeep2整合了bowtie、ViennaRNA医咨、randfold枫匾、PDF-API2等多個軟件,動物miRNA分析用的多拟淮,有專門為植物開發(fā)的mirdeep-P婿牍,但是目前下載不了。而且mirdeep2的安裝很死板惩歉,路徑受限各種報錯不好裝等脂,本來都裝好跑通了后來重新跑的時候就又要重新裝一遍,不推薦撑蚌。

新miRNA預測軟件mireap核心腳本使perl寫的上遥,里面的模塊FFW1現(xiàn)在找不到了,所以用不了

參考:

一個簡易的miRNA分析流程

最后編輯于
?著作權歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末争涌,一起剝皮案震驚了整個濱河市粉楚,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖模软,帶你破解...
    沈念sama閱讀 206,013評論 6 481
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件伟骨,死亡現(xiàn)場離奇詭異,居然都是意外死亡燃异,警方通過查閱死者的電腦和手機携狭,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 88,205評論 2 382
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來回俐,“玉大人逛腿,你說我怎么就攤上這事〗銎模” “怎么了单默?”我有些...
    開封第一講書人閱讀 152,370評論 0 342
  • 文/不壞的土叔 我叫張陵,是天一觀的道長忘瓦。 經(jīng)常有香客問我搁廓,道長,這世上最難降的妖魔是什么耕皮? 我笑而不...
    開封第一講書人閱讀 55,168評論 1 278
  • 正文 為了忘掉前任境蜕,我火速辦了婚禮,結(jié)果婚禮上明场,老公的妹妹穿的比我還像新娘。我一直安慰自己李丰,他們只是感情好苦锨,可當我...
    茶點故事閱讀 64,153評論 5 371
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著趴泌,像睡著了一般舟舒。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上嗜憔,一...
    開封第一講書人閱讀 48,954評論 1 283
  • 那天秃励,我揣著相機與錄音,去河邊找鬼吉捶。 笑死夺鲜,一個胖子當著我的面吹牛,可吹牛的內(nèi)容都是我干的呐舔。 我是一名探鬼主播币励,決...
    沈念sama閱讀 38,271評論 3 399
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼珊拼!你這毒婦竟也來了食呻?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 36,916評論 0 259
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎仅胞,沒想到半個月后每辟,有當?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 43,382評論 1 300
  • 正文 獨居荒郊野嶺守林人離奇死亡干旧,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 35,877評論 2 323
  • 正文 我和宋清朗相戀三年渠欺,在試婚紗的時候發(fā)現(xiàn)自己被綠了。 大學時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片莱革。...
    茶點故事閱讀 37,989評論 1 333
  • 序言:一個原本活蹦亂跳的男人離奇死亡峻堰,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出盅视,到底是詐尸還是另有隱情捐名,我是刑警寧澤,帶...
    沈念sama閱讀 33,624評論 4 322
  • 正文 年R本政府宣布闹击,位于F島的核電站镶蹋,受9級特大地震影響,放射性物質(zhì)發(fā)生泄漏赏半。R本人自食惡果不足惜贺归,卻給世界環(huán)境...
    茶點故事閱讀 39,209評論 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望断箫。 院中可真熱鬧拂酣,春花似錦、人聲如沸仲义。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,199評論 0 19
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽埃撵。三九已至赵颅,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間暂刘,已是汗流浹背饺谬。 一陣腳步聲響...
    開封第一講書人閱讀 31,418評論 1 260
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留谣拣,地道東北人募寨。 一個月前我還...
    沈念sama閱讀 45,401評論 2 352
  • 正文 我出身青樓,卻偏偏與公主長得像森缠,于是被迫代替她去往敵國和親绪商。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 42,700評論 2 345

推薦閱讀更多精彩內(nèi)容