邏輯回歸

邏輯回歸

常用于分類中將線性回歸轉(zhuǎn)換為概率值[0,1]

image

損失函數(shù)重新定義

image

當(dāng)有多個樣本時

image

代入

image

scikit_learn

image

使用邏輯回歸會默認(rèn)自動使用L2正則化陶缺,為了必須使用正則化涎劈,所以我們前面說的正則化前的比重參數(shù)就被刪除了, 轉(zhuǎn)而為之的是超參數(shù)C忙灼,這個C是乘以損失函數(shù)的杭攻。也就是讓我們用來調(diào)節(jié)損失函數(shù)的比重,但正則化一定會存在

from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler

def PolynomialLogisticRegression(degree, C, penalty='l2'):
    return Pipeline([
        ('poly', PolynomialFeatures(degree=degree)),
        ('std_scaler', StandardScaler()),
        ('log_reg', LogisticRegression(C=C, penalty=penalty))#C為損失函數(shù)權(quán)重猫态,penalty為使用的正則算法
    ])

poly_log_reg = PolynomialLogisticRegression(degree=2,C=0.1)
poly_log_reg.fit(X_train, y_train)
poly_log_reg.score(X_train, y_train)

也可以單獨(dú)使用

from sklearn.multiclass import OneVsRestClassifier

ovr = OneVsRestClassifier(log_reg)
ovr.fit(X_train, y_train)
ovr.score(X_test, y_test)

邏輯回歸解決多分類

  • OvR (One vs Rest)

    image

    一針對剩余佣蓉。原理是 在有多分類的情況下,先將多分類問題轉(zhuǎn)變?yōu)?分類問題亲雪。具體:將其中一分類變?yōu)?勇凭,其余都為0.再使用邏輯回歸,看樣本屬于1的概率义辕。之后以此類推虾标,所有分類都使用一針對剩余。最終會得到每個樣本的對應(yīng)概率灌砖,選擇最大的就為分類值

      import numpy as np
      import matplotlib.pyplot as plt
      from sklearn import datasets
      from sklearn.linear_model import LogisticRegression
      
      iris = datasets.load_iris()
      X = iris.data
      y = iris.target 
      from sklearn.model_selection import train_test_split
      
      X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=666)
      
      log_reg = LogisticRegression()#默認(rèn)使用OvR
      log_reg.fit(X_train, y_train)
      log_reg.score(X_test, y_test)
    
  • OvO (One vs One)

    image

    一對一璧函。原理是 在有多分類的情況下,將數(shù)據(jù)分割成兩兩分類的情況基显。轉(zhuǎn)換為2分類后使用邏輯回歸蘸吓。判斷樣本在哪個分類中的概率最大,選擇最大的分類值撩幽。這種方式事件復(fù)雜度更高

    log_reg = LogisticRegression(multi_class="multinomial", solver="newton-cg")#multi_class默認(rèn)使用OvR,這里使用OvO库继。當(dāng)使用OvO時箩艺,因為scikit-learn不是使用梯度下降,是使用更快的算法宪萄,所以這里要重新指定算法來計算OvO

也可以單獨(dú)使用

from sklearn.multiclass import OneVsOneClassifier

ovo = OneVsOneClassifier(log_reg)
ovo.fit(X_train, y_train)
ovo.score(X_test, y_test)
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末艺谆,一起剝皮案震驚了整個濱河市,隨后出現(xiàn)的幾起案子拜英,更是在濱河造成了極大的恐慌静汤,老刑警劉巖,帶你破解...
    沈念sama閱讀 219,589評論 6 508
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件聊记,死亡現(xiàn)場離奇詭異撒妈,居然都是意外死亡,警方通過查閱死者的電腦和手機(jī)排监,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 93,615評論 3 396
  • 文/潘曉璐 我一進(jìn)店門狰右,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人舆床,你說我怎么就攤上這事棋蚌。” “怎么了挨队?”我有些...
    開封第一講書人閱讀 165,933評論 0 356
  • 文/不壞的土叔 我叫張陵谷暮,是天一觀的道長。 經(jīng)常有香客問我盛垦,道長湿弦,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 58,976評論 1 295
  • 正文 為了忘掉前任腾夯,我火速辦了婚禮颊埃,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘蝶俱。我一直安慰自己班利,他們只是感情好,可當(dāng)我...
    茶點故事閱讀 67,999評論 6 393
  • 文/花漫 我一把揭開白布榨呆。 她就那樣靜靜地躺著罗标,像睡著了一般。 火紅的嫁衣襯著肌膚如雪积蜻。 梳的紋絲不亂的頭發(fā)上闯割,一...
    開封第一講書人閱讀 51,775評論 1 307
  • 那天,我揣著相機(jī)與錄音竿拆,去河邊找鬼宙拉。 笑死,一個胖子當(dāng)著我的面吹牛如输,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 40,474評論 3 420
  • 文/蒼蘭香墨 我猛地睜開眼不见,長吁一口氣:“原來是場噩夢啊……” “哼澳化!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起稳吮,我...
    開封第一講書人閱讀 39,359評論 0 276
  • 序言:老撾萬榮一對情侶失蹤缎谷,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后灶似,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體列林,經(jīng)...
    沈念sama閱讀 45,854評論 1 317
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 38,007評論 3 338
  • 正文 我和宋清朗相戀三年酪惭,在試婚紗的時候發(fā)現(xiàn)自己被綠了希痴。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 40,146評論 1 351
  • 序言:一個原本活蹦亂跳的男人離奇死亡春感,死狀恐怖砌创,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情鲫懒,我是刑警寧澤嫩实,帶...
    沈念sama閱讀 35,826評論 5 346
  • 正文 年R本政府宣布,位于F島的核電站窥岩,受9級特大地震影響甲献,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜颂翼,卻給世界環(huán)境...
    茶點故事閱讀 41,484評論 3 331
  • 文/蒙蒙 一晃洒、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧疚鲤,春花似錦锥累、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 32,029評論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至诲宇,卻和暖如春际歼,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背姑蓝。 一陣腳步聲響...
    開封第一講書人閱讀 33,153評論 1 272
  • 我被黑心中介騙來泰國打工鹅心, 沒想到剛下飛機(jī)就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人纺荧。 一個月前我還...
    沈念sama閱讀 48,420評論 3 373
  • 正文 我出身青樓旭愧,卻偏偏與公主長得像颅筋,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子输枯,可洞房花燭夜當(dāng)晚...
    茶點故事閱讀 45,107評論 2 356

推薦閱讀更多精彩內(nèi)容