單細(xì)胞測(cè)序數(shù)據(jù)整合練習(xí)(詳細(xì)代碼)

最近在學(xué)習(xí)芬蘭CSC-IT科學(xué)中心主講的生物信息課程(https://www.csc.fi/web/training/-/scrnaseq)視頻,官網(wǎng)上還提供了練習(xí)素材以及詳細(xì)代碼稻扬,今天就來練習(xí)一下單細(xì)胞數(shù)據(jù)整合的過程卦方。跟著官網(wǎng)的代碼走一遍:

https://github.com/NBISweden/excelerate-scRNAseq/blob/master/session-integration/Data_Integration.md

該練習(xí)中使用兩種方法進(jìn)行多個(gè)單細(xì)胞測(cè)序dataset的整合,之后進(jìn)行批次效應(yīng)的去除泰佳,并且定量評(píng)估整合后的數(shù)據(jù)質(zhì)量盼砍。練習(xí)中的datasets分別來自:CelSeq (GSE81076) CelSeq2 (GSE85241), Fluidigm C1 (GSE86469), and SMART-Seq2 (E-MTAB-5061)。原始矩陣和相關(guān)metadata在這里下載逝她。(這里需要注意的是浇坐,作者上傳的這個(gè)矩陣是已經(jīng)經(jīng)過整合的,但是并沒有去除批次效應(yīng)黔宛,后面代碼里會(huì)將這個(gè)矩陣拆分成4個(gè)datasets近刘,然后再進(jìn)行整合)

開始之前,加載R包:

> library("Seurat")
> library("ggplot2")
> library("cowplot")
> library("scater")
> library("scran")
> library("BiocParallel")
> library("BiocNeighbors")

(一)利用Seurat (anchors and CCA) 方法進(jìn)行數(shù)據(jù)整合以及批次效應(yīng)處理

加載表達(dá)矩陣和metadata,其中metadata里包含測(cè)序平臺(tái)(列)觉渴,細(xì)胞類型注釋(列)

> pancreas.data <- readRDS(file = "pancreas_expression_matrix.rds")
> metadata <- readRDS(file = "pancreas_metadata.rds")

看一下這個(gè)metadata:

創(chuàng)建seurat對(duì)象:

> pancreas <- CreateSeuratObject(pancreas.data, meta.data = metadata)

在做任何批次效應(yīng)處理之前介劫,都要先查看一下dataset,我們先做標(biāo)準(zhǔn)的預(yù)處理(log-標(biāo)準(zhǔn)化)案淋,然后識(shí)別變量(“vst”)座韵,接下來scale整合后的data,跑PCA和可視化踢京,再將整合后的細(xì)胞分群(cluster)

# 標(biāo)準(zhǔn)化并且尋找變量(variable features)
> pancreas <- NormalizeData(pancreas, verbose = FALSE)
> pancreas <- FindVariableFeatures(pancreas, selection.method = "vst", nfeatures = 2000, verbose = FALSE)
# 跑標(biāo)準(zhǔn)的流程(可視化和clustering)
> pancreas <- ScaleData(pancreas, verbose = FALSE)
> pancreas <- RunPCA(pancreas, npcs = 30, verbose = FALSE)
> pancreas <- RunUMAP(pancreas, reduction = "pca", dims = 1:30)
> p1 <- DimPlot(pancreas, reduction = "umap", group.by = "tech")
> p2 <- DimPlot(pancreas, reduction = "umap", group.by = "celltype", label = TRUE, repel = TRUE) + 
  NoLegend()
> plot_grid(p1, p2)
這是這個(gè)整合后的數(shù)據(jù)誉碴,但是這個(gè)數(shù)據(jù)并沒有去除批次效應(yīng)。左圖里4個(gè)不同平臺(tái)測(cè)序的結(jié)果重合度很低瓣距,右圖里根據(jù)細(xì)胞類型分群也沒有很好的clustering

下面作者將這個(gè)整合的數(shù)據(jù)拆分成一個(gè)列表(包含4個(gè)不同的datasets)黔帕,每一個(gè)dataset作為一個(gè)元素。進(jìn)行標(biāo)準(zhǔn)的預(yù)處理(log-normalization)蹈丸,識(shí)別每一個(gè)datset的變量特征("vst"):

> pancreas.list <- SplitObject(pancreas, split.by = "tech")

> for (i in 1:length(pancreas.list)) {
  pancreas.list[[i]] <- NormalizeData(pancreas.list[[i]], verbose = FALSE)
  pancreas.list[[i]] <- FindVariableFeatures(pancreas.list[[i]], selection.method = "vst", nfeatures = 2000, 
                                             verbose = FALSE)
}

整合4個(gè)胰島細(xì)胞的datasets
利用FindIntegrationAnchors功能識(shí)別anchor成黄,seurat對(duì)象列表作為輸入:

> reference.list <- pancreas.list[c("celseq", "celseq2", "smartseq2", "fluidigmc1")]
> pancreas.anchors <- FindIntegrationAnchors(object.list = reference.list, dims = 1:30)

Computing 2000 integration features
Scaling features for provided objects
  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=01s  
Finding all pairwise anchors
  |                                                  | 0 % ~calculating  Running CCA
Merging objects
Finding neighborhoods
Finding anchors
    Found 3499 anchors
Filtering anchors
    Retained 2821 anchors
Extracting within-dataset neighbors
  |+++++++++                                         | 17% ~01m 01s      Running CCA
Merging objects
Finding neighborhoods
Finding anchors
    Found 3515 anchors
Filtering anchors
    Retained 2701 anchors
Extracting within-dataset neighbors
  |+++++++++++++++++                                 | 33% ~49s          Running CCA
Merging objects
Finding neighborhoods
Finding anchors
    Found 6173 anchors
Filtering anchors
    Retained 4634 anchors
Extracting within-dataset neighbors
  |+++++++++++++++++++++++++                         | 50% ~50s          Running CCA
Merging objects
Finding neighborhoods
Finding anchors
    Found 2176 anchors
Filtering anchors
    Retained 1841 anchors
Extracting within-dataset neighbors
  |++++++++++++++++++++++++++++++++++                | 67% ~27s          Running CCA
Merging objects
Finding neighborhoods
Finding anchors
    Found 2774 anchors
Filtering anchors
    Retained 2478 anchors
Extracting within-dataset neighbors
  |++++++++++++++++++++++++++++++++++++++++++        | 83% ~12s          Running CCA
Merging objects
Finding neighborhoods
Finding anchors
    Found 2723 anchors
Filtering anchors
    Retained 2410 anchors
Extracting within-dataset neighbors
  |++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=01m 10s

然后將上面這些anchors傳遞給IntegrateData函數(shù),該函數(shù)返回一個(gè)Seurat對(duì)象:

> pancreas.integrated <- IntegrateData(anchorset = pancreas.anchors, dims = 1:30)

運(yùn)行IntegrateData后白华,Seurat對(duì)象將包含一個(gè)新的整合后的(或“批量校正”)表達(dá)矩陣的Assay慨默,請(qǐng)注意,原始矩陣(未修正的值)仍然存儲(chǔ)在Seurat對(duì)象的RNA Assay中弧腥,因此可以來回切換厦取。

然后我們可以使用這個(gè)新的整合的矩陣進(jìn)行下游分析和可視化。在這里管搪,我們scale整合的數(shù)據(jù)虾攻,運(yùn)行PCA,并使用UMAP可視化結(jié)果更鲁。整合的數(shù)據(jù)集按細(xì)胞類型cluster霎箍,而不是按技術(shù)。

#切換到整合后的assay
> DefaultAssay(pancreas.integrated) <- "integrated"

跑標(biāo)準(zhǔn)流程(可視化和clustering):

> pancreas.integrated <- ScaleData(pancreas.integrated, verbose = FALSE)
> pancreas.integrated <- RunPCA(pancreas.integrated, npcs = 30, verbose = FALSE)
> pancreas.integrated <- RunUMAP(pancreas.integrated, reduction = "pca", dims = 1:30)
> p3 <- DimPlot(pancreas.integrated, reduction = "umap", group.by = "tech")
> p4 <- DimPlot(pancreas.integrated, reduction = "umap", group.by = "celltype", label = TRUE, repel = TRUE) + 
   NoLegend()
> plot_grid(p3, p4)
這時(shí)的圖就是拆分后再次整合澡为、去除批次效應(yīng)之后的圖了漂坏。左圖的4個(gè)平臺(tái)測(cè)序分類的結(jié)果重疊度很高,右圖按照細(xì)胞類型分類的clustering結(jié)果也很好

(二)利用Mutual Nearest Neighbor (MNN)方法進(jìn)行數(shù)據(jù)整合

你可以用count矩陣創(chuàng)建一個(gè)singlecellexper(SCE)對(duì)象媒至,也可以從Seurat轉(zhuǎn)換成SCE對(duì)象:

> celseq.data <- as.SingleCellExperiment(pancreas.list$celseq)
> celseq2.data <- as.SingleCellExperiment(pancreas.list$celseq2)
> fluidigmc1.data <- as.SingleCellExperiment(pancreas.list$fluidigmc1)
> smartseq2.data <- as.SingleCellExperiment(pancreas.list$smartseq2)

尋找共同的基因顶别,并且把每個(gè)dataset簡(jiǎn)化成由那些共同基因組成的dataset:

> keep_genes <- Reduce(intersect, list(rownames(celseq.data),rownames(celseq2.data),
+                                      rownames(fluidigmc1.data),rownames(smartseq2.data)))
> celseq.data <- celseq.data[match(keep_genes, rownames(celseq.data)), ]
> celseq2.data <- celseq2.data[match(keep_genes, rownames(celseq2.data)), ]
> fluidigmc1.data <- fluidigmc1.data[match(keep_genes, rownames(fluidigmc1.data)), ]
> smartseq2.data <- smartseq2.data[match(keep_genes, rownames(smartseq2.data)), ]

接下來使用calculateQCMetrics()計(jì)算質(zhì)量控制特征,通過發(fā)現(xiàn)異常count數(shù)低的或可檢測(cè)到的基因總數(shù)少的異常值來確定低質(zhì)量細(xì)胞:

# 處理celseq.data
> celseq.data <- calculateQCMetrics(celseq.data)
> low_lib_celseq.data <- isOutlier(celseq.data$log10_total_counts, type="lower", nmad=3)
> low_genes_celseq.data <- isOutlier(celseq.data$log10_total_features_by_counts, type="lower", nmad=3)
> celseq.data <- celseq.data[, !(low_lib_celseq.data | low_genes_celseq.data)]
# 處理celseq2.data
> celseq2.data <- calculateQCMetrics(celseq2.data)
> low_lib_celseq2.data <- isOutlier(celseq2.data$log10_total_counts, type="lower", nmad=3)
> low_genes_celseq2.data <- isOutlier(celseq2.data$log10_total_features_by_counts, type="lower", nmad=3)
> celseq2.data <- celseq2.data[, !(low_lib_celseq2.data | low_genes_celseq2.data)]
# 處理fluidigmc1.data
> fluidigmc1.data <- calculateQCMetrics(fluidigmc1.data)
> low_lib_fluidigmc1.data <- isOutlier(fluidigmc1.data$log10_total_counts, type="lower", nmad=3)
> low_genes_fluidigmc1.data <- isOutlier(fluidigmc1.data$log10_total_features_by_counts, type="lower", nmad=3)
> fluidigmc1.data <- fluidigmc1.data[, !(low_lib_fluidigmc1.data | low_genes_fluidigmc1.data)]
# 處理smartseq2.data
> smartseq2.data <- calculateQCMetrics(smartseq2.data)
> low_lib_smartseq2.data <- isOutlier(smartseq2.data$log10_total_counts, type="lower", nmad=3)
> low_genes_smartseq2.data <- isOutlier(smartseq2.data$log10_total_features_by_counts, type="lower", nmad=3)
> smartseq2.data <- smartseq2.data[, !(low_lib_smartseq2.data | low_genes_smartseq2.data)]

然后使用computeSumFactors()和scran包的Normalize()函數(shù)計(jì)算sizefactor來標(biāo)準(zhǔn)化數(shù)據(jù):

# Compute sizefactors
> celseq.data <- computeSumFactors(celseq.data)
> celseq2.data <- computeSumFactors(celseq2.data)
> fluidigmc1.data <- computeSumFactors(fluidigmc1.data)
> smartseq2.data <- computeSumFactors(smartseq2.data)
# Normalize
> celseq.data <- normalize(celseq.data)
> celseq2.data <- normalize(celseq2.data)
> fluidigmc1.data <- normalize(fluidigmc1.data)
> smartseq2.data <- normalize(smartseq2.data)

features(基因)選擇:使用trendVar()和decomposeVar()函數(shù)來計(jì)算每個(gè)基因的variance拒啰,并將其分為技術(shù)variance和生物學(xué)的variance:

# celseq.data
> fit_celseq.data <- trendVar(celseq.data, use.spikes=FALSE) 
> dec_celseq.data <- decomposeVar(celseq.data, fit_celseq.data)
> dec_celseq.data$Symbol_TENx <- rowData(celseq.data)$Symbol_TENx
> dec_celseq.data <- dec_celseq.data[order(dec_celseq.data$bio, decreasing = TRUE), ]
# celseq2.data
> fit_celseq2.data <- trendVar(celseq2.data, use.spikes=FALSE) 
> dec_celseq2.data <- decomposeVar(celseq2.data, fit_celseq2.data)
> dec_celseq2.data$Symbol_TENx <- rowData(celseq2.data)$Symbol_TENx
> dec_celseq2.data <- dec_celseq2.data[order(dec_celseq2.data$bio, decreasing = TRUE), ]
# fluidigmc1.data
> fit_fluidigmc1.data <- trendVar(fluidigmc1.data, use.spikes=FALSE) 
> dec_fluidigmc1.data <- decomposeVar(fluidigmc1.data, fit_fluidigmc1.data)
> dec_fluidigmc1.data$Symbol_TENx <- rowData(fluidigmc1.data)$Symbol_TENx
> dec_fluidigmc1.data <- dec_fluidigmc1.data[order(dec_fluidigmc1.data$bio, decreasing = TRUE), ]
# smartseq2.data
> fit_smartseq2.data <- trendVar(smartseq2.data, use.spikes=FALSE) 
> dec_smartseq2.data <- decomposeVar(smartseq2.data, fit_smartseq2.data)
> dec_smartseq2.data$Symbol_TENx <- rowData(smartseq2.data)$Symbol_TENx
> dec_smartseq2.data <- dec_smartseq2.data[order(dec_smartseq2.data$bio, decreasing = TRUE), ]
# 選擇最能提供信息的基因驯绎,這些基因在所有的dataset里都表達(dá)
> universe <- Reduce(intersect, list(rownames(dec_celseq.data),rownames(dec_celseq2.data),
                                   rownames(dec_fluidigmc1.data),rownames(dec_smartseq2.data)))
> mean.bio <- (dec_celseq.data[universe,"bio"] + dec_celseq2.data[universe,"bio"] + 
                dec_fluidigmc1.data[universe,"bio"] + dec_smartseq2.data[universe,"bio"])/4
> hvg_genes <- universe[mean.bio > 0]

將這些datasets結(jié)合到一個(gè)統(tǒng)一的SingleCellExperiment里:

# 總原始counts的整合
> counts_pancreas <- cbind(counts(celseq.data), counts(celseq2.data), 
                          counts(fluidigmc1.data), counts(smartseq2.data))
# 總的標(biāo)準(zhǔn)化后的counts整合 (with multibatch normalization)
> logcounts_pancreas <- cbind(logcounts(celseq.data), logcounts(celseq2.data), 
                             logcounts(fluidigmc1.data), logcounts(smartseq2.data))
# 構(gòu)建整合數(shù)據(jù)的sce對(duì)象
> sce <- SingleCellExperiment( 
   assays = list(counts = counts_pancreas, logcounts = logcounts_pancreas),  
   rowData = rowData(celseq.data), # same as rowData(pbmc4k) 
   colData = rbind(colData(celseq.data), colData(celseq2.data), 
                   colData(fluidigmc1.data), colData(smartseq2.data)) 
 )
# 將前面的hvg_genes存儲(chǔ)到sce對(duì)象的metadata slot中 
> metadata(sce)$hvg_genes <- hvg_genes

用MNN處理批次效應(yīng)之前先看一下這些datasets:

> sce <- runPCA(sce,
               ncomponents = 20,
               feature_set = hvg_genes,
               method = "irlba")
> 
> names(reducedDims(sce)) <- "PCA_naive" 
> 
> p5 <- plotReducedDim(sce, use_dimred = "PCA_naive", colour_by = "tech") + 
   ggtitle("PCA Without batch correction")
> p6 <- plotReducedDim(sce, use_dimred = "PCA_naive", colour_by = "celltype") + 
   ggtitle("PCA Without batch correction")
> plot_grid(p5, p6)
去除批次效應(yīng)之前

使用fastMNN() 功能處理批次效應(yīng)。跑fastMNN()之前谋旦,我們需要先rescale每一個(gè)批次剩失,來調(diào)整不同批次之間的測(cè)序深度屈尼。用scran包里的multiBatchNorm()功能對(duì)size factor進(jìn)行調(diào)整后,重新計(jì)算log標(biāo)準(zhǔn)化的表達(dá)值拴孤,以適應(yīng)不同SingleCellExperiment對(duì)象的系統(tǒng)差異脾歧。之前的size factors僅能移除單個(gè)批次里細(xì)胞之間的bias。現(xiàn)在我們要通過消除批次之間技術(shù)差異來提高了校正的質(zhì)量:

> rescaled <- multiBatchNorm(celseq.data, celseq2.data, fluidigmc1.data, smartseq2.data) 
> celseq.data_rescaled <- rescaled[[1]]
> celseq2.data_rescaled <- rescaled[[2]]
> fluidigmc1.data_rescaled <- rescaled[[3]]
> smartseq2.data_rescaled <- rescaled[[4]]

跑fastMNN乞巧,把降維的MNN representation存在sce對(duì)象的 reducedDims slot里:

> mnn_out <- fastMNN(celseq.data_rescaled, 
                   celseq2.data_rescaled,
                   fluidigmc1.data_rescaled,
                   smartseq2.data_rescaled,
                   subset.row = metadata(sce)$hvg_genes,
                   k = 20, d = 50, approximate = TRUE,
                   # BPPARAM = BiocParallel::MulticoreParam(8),
                   BNPARAM = BiocNeighbors::AnnoyParam())

> reducedDim(sce, "MNN") <- mnn_out$correct

需要注意的是涨椒,fastMNN()不會(huì)生成批次處理后的表達(dá)矩陣摊鸡。因此绽媒,fastMNN()的結(jié)果只能作為降維表示,適用于直接繪圖免猾、TSNE/UMAP是辕、聚類和軌跡分析。
畫批次矯正后的圖:

> p7 <- plotReducedDim(sce, use_dimred = "MNN", colour_by = "tech") + ggtitle("MNN Ouput Reduced Dimensions")
> p8 <- plotReducedDim(sce, use_dimred = "MNN", colour_by = "celltype") + ggtitle("MNN Ouput Reduced Dimensions")
> plot_grid(p7, p8)
去除批次效應(yīng)之后的圖
最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
禁止轉(zhuǎn)載猎提,如需轉(zhuǎn)載請(qǐng)通過簡(jiǎn)信或評(píng)論聯(lián)系作者获三。
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市锨苏,隨后出現(xiàn)的幾起案子疙教,更是在濱河造成了極大的恐慌,老刑警劉巖伞租,帶你破解...
    沈念sama閱讀 206,126評(píng)論 6 481
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件贞谓,死亡現(xiàn)場(chǎng)離奇詭異,居然都是意外死亡葵诈,警方通過查閱死者的電腦和手機(jī)裸弦,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 88,254評(píng)論 2 382
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來作喘,“玉大人理疙,你說我怎么就攤上這事∨⑻梗” “怎么了窖贤?”我有些...
    開封第一講書人閱讀 152,445評(píng)論 0 341
  • 文/不壞的土叔 我叫張陵,是天一觀的道長(zhǎng)贰锁。 經(jīng)常有香客問我赃梧,道長(zhǎng),這世上最難降的妖魔是什么李根? 我笑而不...
    開封第一講書人閱讀 55,185評(píng)論 1 278
  • 正文 為了忘掉前任槽奕,我火速辦了婚禮,結(jié)果婚禮上房轿,老公的妹妹穿的比我還像新娘粤攒。我一直安慰自己所森,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 64,178評(píng)論 5 371
  • 文/花漫 我一把揭開白布夯接。 她就那樣靜靜地躺著焕济,像睡著了一般。 火紅的嫁衣襯著肌膚如雪盔几。 梳的紋絲不亂的頭發(fā)上晴弃,一...
    開封第一講書人閱讀 48,970評(píng)論 1 284
  • 那天,我揣著相機(jī)與錄音逊拍,去河邊找鬼上鞠。 笑死,一個(gè)胖子當(dāng)著我的面吹牛芯丧,可吹牛的內(nèi)容都是我干的芍阎。 我是一名探鬼主播,決...
    沈念sama閱讀 38,276評(píng)論 3 399
  • 文/蒼蘭香墨 我猛地睜開眼缨恒,長(zhǎng)吁一口氣:“原來是場(chǎng)噩夢(mèng)啊……” “哼谴咸!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起骗露,我...
    開封第一講書人閱讀 36,927評(píng)論 0 259
  • 序言:老撾萬榮一對(duì)情侶失蹤岭佳,失蹤者是張志新(化名)和其女友劉穎,沒想到半個(gè)月后萧锉,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體珊随,經(jīng)...
    沈念sama閱讀 43,400評(píng)論 1 300
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 35,883評(píng)論 2 323
  • 正文 我和宋清朗相戀三年驹暑,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了玫恳。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 37,997評(píng)論 1 333
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡优俘,死狀恐怖京办,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情帆焕,我是刑警寧澤惭婿,帶...
    沈念sama閱讀 33,646評(píng)論 4 322
  • 正文 年R本政府宣布,位于F島的核電站叶雹,受9級(jí)特大地震影響财饥,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜折晦,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 39,213評(píng)論 3 307
  • 文/蒙蒙 一钥星、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧满着,春花似錦谦炒、人聲如沸贯莺。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,204評(píng)論 0 19
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽缕探。三九已至,卻和暖如春还蹲,著一層夾襖步出監(jiān)牢的瞬間爹耗,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 31,423評(píng)論 1 260
  • 我被黑心中介騙來泰國(guó)打工谜喊, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留潭兽,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 45,423評(píng)論 2 352
  • 正文 我出身青樓锅论,卻偏偏與公主長(zhǎng)得像讼溺,于是被迫代替她去往敵國(guó)和親楣号。 傳聞我的和親對(duì)象是個(gè)殘疾皇子最易,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 42,722評(píng)論 2 345

推薦閱讀更多精彩內(nèi)容