Bisection Method in One Dimension

zero-finding problem:

Given a scalar function F(x) : R → R, find a point x? ∈ R s.t.
F(x?) = 0.

Although not all our problems are immediately viewed in this form we can always rewrite them in this way.

Convergence criteria(標(biāo)準(zhǔn))

Possible conditions to satisfy:
|xn+1 ?x?| < |xn ?x?|
ie. we are getting closer to the root at each step

|F(xn+1)| < |F(xn)|
ie. the function F(x) is reduced at each step

  • These criteria are distinct
  • one does not imply the other
  • Different algorithms may satisfy one of these, rarely both, and often neither

Convergence rate

  • converges linearly(線性收斂): Assume the sequence x0, x1, . . . , xn converges to x?.
Convergence rate

if there exists 0 < α < 1 and satisfied this formula, Here α is the rate of convergence.
i.e. the error is (eventually) reduced by a constant factor of α after each iteration

If α = 1 the sequence converges sublinearly*(亞線性).

  • Sequence converges superlinearly(序列超線性收斂)
    if for some q > 1 and α > 0
    Sequence converges superlinearly

    If q = 2, we say it converges quadratically(呈二次方收斂).

The Bisection Method

  • condition

  • 1)the function F(x) is continuous

  • 2)Assume we know two points xL and xR, such that
    F(xL) F(xR) ≤ 0
    called the bracket condition for the bracket [xL , xR ]

  • 3)the Intermediate Value Theorem: This implies that there is a solution x? ∈ [xL,xR], since the function changes sign over that interval

    The Bisection Method

  • Bisection Method is converges linearly and its converges rate is 1/2

  • Note: The convergence is not monotone(單調(diào)) in general.
    i.e. it can happen that for some steps n we have |F(xn+1)| > |F(xn)|.

  • The upper bound above guarantees that eventually lim n→∞ x Cn = x? so that limn→∞ F(xCn) = 0.

  • Pros and cons of bisection method

  • Performance:
    Guaranteed to converge to x?
    Slow (linear convergence rate)

Other issues:

  • We require an initial bracket (2 values), not just an initial guess (1 value)
  • In practice we may have to search for a bracket given one point
  • The initial bracket [xL , xR ] may contain more than one zero and it is not clear which it will compute

The difference of Bisection Method and Newton Method

  • The Bisection Method is usually stopped when |b?a| < TOLx
    for a bracket [a, b].
  • Newton’s Method is usually stopped when
    |F(x)| < TOLF
    TOLx and TOLF are appropriately chosen tolerances
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌徙邻,老刑警劉巖仗考,帶你破解...
    沈念sama閱讀 212,383評論 6 493
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件布朦,死亡現(xiàn)場離奇詭異稽屏,居然都是意外死亡,警方通過查閱死者的電腦和手機滥沫,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 90,522評論 3 385
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來键俱,“玉大人兰绣,你說我怎么就攤上這事”嗾瘢” “怎么了缀辩?”我有些...
    開封第一講書人閱讀 157,852評論 0 348
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經(jīng)常有香客問我臀玄,道長瓢阴,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 56,621評論 1 284
  • 正文 為了忘掉前任健无,我火速辦了婚禮荣恐,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘累贤。我一直安慰自己叠穆,他們只是感情好,可當(dāng)我...
    茶點故事閱讀 65,741評論 6 386
  • 文/花漫 我一把揭開白布臼膏。 她就那樣靜靜地躺著硼被,像睡著了一般。 火紅的嫁衣襯著肌膚如雪渗磅。 梳的紋絲不亂的頭發(fā)上嚷硫,一...
    開封第一講書人閱讀 49,929評論 1 290
  • 那天,我揣著相機與錄音夺溢,去河邊找鬼论巍。 笑死,一個胖子當(dāng)著我的面吹牛风响,可吹牛的內(nèi)容都是我干的嘉汰。 我是一名探鬼主播,決...
    沈念sama閱讀 39,076評論 3 410
  • 文/蒼蘭香墨 我猛地睜開眼状勤,長吁一口氣:“原來是場噩夢啊……” “哼鞋怀!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起持搜,我...
    開封第一講書人閱讀 37,803評論 0 268
  • 序言:老撾萬榮一對情侶失蹤密似,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后葫盼,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體残腌,經(jīng)...
    沈念sama閱讀 44,265評論 1 303
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 36,582評論 2 327
  • 正文 我和宋清朗相戀三年贫导,在試婚紗的時候發(fā)現(xiàn)自己被綠了抛猫。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 38,716評論 1 341
  • 序言:一個原本活蹦亂跳的男人離奇死亡孩灯,死狀恐怖闺金,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情峰档,我是刑警寧澤败匹,帶...
    沈念sama閱讀 34,395評論 4 333
  • 正文 年R本政府宣布寨昙,位于F島的核電站,受9級特大地震影響掀亩,放射性物質(zhì)發(fā)生泄漏舔哪。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點故事閱讀 40,039評論 3 316
  • 文/蒙蒙 一归榕、第九天 我趴在偏房一處隱蔽的房頂上張望尸红。 院中可真熱鬧,春花似錦刹泄、人聲如沸外里。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,798評論 0 21
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽盅蝗。三九已至,卻和暖如春姆蘸,著一層夾襖步出監(jiān)牢的瞬間墩莫,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 32,027評論 1 266
  • 我被黑心中介騙來泰國打工逞敷, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留狂秦,地道東北人。 一個月前我還...
    沈念sama閱讀 46,488評論 2 361
  • 正文 我出身青樓推捐,卻偏偏與公主長得像裂问,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子牛柒,可洞房花燭夜當(dāng)晚...
    茶點故事閱讀 43,612評論 2 350

推薦閱讀更多精彩內(nèi)容