公眾號(hào):大鄧帶你玩python
1.1隨機(jī)生成像素
生成與test.jpg相同大小圖片谢床,但是像素是隨機(jī)生成的将宪。
import numpy as np
import cv2
raw_image = cv2.imread('test圖片路徑')
cv2.imshow('raw image',raw_image)
#獲取圖片像素的行數(shù)和列數(shù)
rows = raw_image.shape[0]
cols = raw_image.shape[1]
#生成像素空數(shù)組廓握,整數(shù)型凭迹。待填充隨機(jī)色數(shù)值
image = np.zeros(shape=(rows,cols,3), dtype=np.uint8)
for r in range(rows):
for c in range(cols):
image[r, c, 0] = np.random.randint(0, 255)
image[r, c, 1] = np.random.randint(0, 255)
image[r, c, 2] = np.random.randint(0, 255)
cv2.imshow('random pixel image', image)
cv2.waitKey()
cv2.destroyAllWindows()
1.2負(fù)片
負(fù)片(Negative Film)是經(jīng)曝光和顯影加工后得到的影像摊聋,其明暗與被攝體相反偿枕,其色彩則為被攝體的補(bǔ)色璧瞬。即
負(fù)片上的像素值 = 255-原值
import numpy as np
import cv2
image = cv2.imread('test圖片路徑')
cv2.imshow('raw image', image)
rows = image.shape[0]
cols = image.shape[1]
for r in range(rows):
for c in range(cols):
image[r, c, 0] = 255-image[r, c, 0]
image[r, c, 1] = 255-image[r, c, 1]
image[r, c, 2] = 255-image[r, c, 2]
cv2.imshow('negative image', image)
cv2.waitKey()
cv2.destroyAllWindows()
1.3圖像平鋪
生成2*3,兩行三列6個(gè)美女頭像的一張圖。
import numpy as np
import cv2
image = cv2.imread('測(cè)試頭像圖片路徑')
#原圖行數(shù)列數(shù)
rows = image.shape[0]
cols = image.shape[1]
#新圖平鋪2行三列渐夸,即新圖行數(shù)變?yōu)?倍嗤锉,列數(shù)變?yōu)?倍
new_rows = rows * 2
new_cols = cols * 3
#生成新圖的數(shù)組
new_image = np.zeros(shape=(new_rows, new_cols, 3), dtype=np.uint8)
#復(fù)制原圖的每一個(gè)像素
row = 0
col = 0
for now_row in range(new_rows):
for now_col in range(new_cols):
new_image[now_row, now_col, 0] = image[row, col, 0]
new_image[now_row, now_col, 1] = image[row, col, 1]
new_image[now_row, now_col, 2] = image[row, col, 2]
col+=1
#超過(guò)原圖列數(shù)范圍,歸0墓塌,重新開(kāi)始復(fù)制
if col>=cols:
col=0
row+=1
#超過(guò)原圖行數(shù)范圍瘟忱,歸0,重新開(kāi)始復(fù)制
if row>=rows:
row=0
cv2.imshow('new image', new_image)
cv2.waitKey()
cv2.destroyAllWindows()
1.4轉(zhuǎn)置矩陣(90度旋轉(zhuǎn)圖片)
矩陣的知識(shí)苫幢,轉(zhuǎn)置
a b
c d
變?yōu)?/p>
a c
b d
import numpy as np
import cv2
image = cv2.imread('test圖片路徑')
cv2.imshow('raw image', image)
#transpose()交換ndarray數(shù)組的0軸和1軸
new_image = image.copy().transpose(1,0,2)
print(new_image.shape)
cv2.imshow('transpose image', new_image)
cv2.waitKey()
cv2.destroyAllWindows()
如果不懂ndarray數(shù)組的transpose()方法访诱,可以翻看下numpy基本知識(shí)。(真正感到大學(xué)的線(xiàn)代開(kāi)始有用了韩肝。)
1.5圖像融合
圖像融合的原理是触菜,讓新圖像的每個(gè)像素成為源圖像中相應(yīng)位置像素值平均值之和。即
源圖片A哀峻、B涡相,合成C圖。
第m行谜诫,n列的像素
C[b,g,r]=(A[b,g,r]+B[b,g,r])/2
代碼
import numpy as np
import cv2
#A漾峡、B攻旦、C圖的尺寸相同
A_img = cv2.imread('a圖片路徑')
B_img = cv2.imread('b圖片路徑')
cv2.imshow('A', A_img)
cv2.imshow('B', B_img)
rows = A_img.shape[0]
cols = A_img.shape[1]
C_img = np.zeros(shape=(rows, cols, 3), dtype=np.uint8)
for r in range(rows):
for c in range(cols):
C_img[r, c, :] = (A_img[r, c, :]+B_img[r, c, :])/2
cv2.imshow('C',C_img)
cv2.waitKey()
cv2.destroyAllWindows()
1.6 圖片鏡像
圖片鏡像是指圖片中沿著中間線(xiàn)左右或上下對(duì)稱(chēng)喻旷。如下圖,是沿著中間牢屋,左右對(duì)稱(chēng)且预。
假設(shè)圖片是對(duì)稱(chēng)的槽袄,圖片寬度(圖片像素列數(shù))為w,選取任意行(這里選第r行)那么圖中對(duì)稱(chēng)的兩個(gè)點(diǎn)A1锋谐、A2,其中A1點(diǎn)坐標(biāo)(r,w1),A2點(diǎn)必然要滿(mǎn)足
A1[r,w1,:]= A2[r,w-w1,:]
代碼
import numpy as np
import cv2
image = cv2.imread('測(cè)試頭像路徑')
rows = image.shape[0]
cols = image.shape[1]
mirror_col = int(cols/2)
for row in range(rows):
for col in range(mirror_col):
image[row, col, :] = image[row, mirror_col-col,:]
cv2.imshow('mirror image', image)
cv2.waitKey()
cv2.destroyAllWindows()
額遍尺,失敗了。雖然對(duì)稱(chēng)涮拗,但并沒(méi)有按照心想的中間線(xiàn)程左右對(duì)稱(chēng)乾戏。
1.7圖像灰度
圖片灰度化原理是,彩色圖像中的每個(gè)像素顏色由B三热、G鼓择、R三個(gè)分量決定,范圍都是(0就漾,255)呐能。灰度圖像B抑堡、G摆出、R三個(gè)分量都相同的一種圖像。
實(shí)現(xiàn)方法:
- 均值法 求出三分量加總后的均值首妖,賦值到三分量上去
-
公式法根據(jù)RGB變換公式
gray = 0.3R+0.59G+0.11B
將gray賦值到三個(gè)分量上去偎漫。 - OpenCV有cvtColor方法,可以完成灰度化悯搔。
1.7.1均值法
import numpy as np
import cv2
image = cv2.imread('測(cè)試頭像路徑')
rows = image.shape[0]
cols = image.shape[1]
for row in range(rows):
for col in range(cols):
average = np.mean(image[row,col,:])
image[row, col, :] = average
cv2.imshow('average image', image)
cv2.waitKey()
cv2.destroyAllWindows()
1.7.2公式法
import numpy as np
import cv2
image = cv2.imread('測(cè)試頭像圖片路徑')
rows = image.shape[0]
cols = image.shape[1]
for row in range(rows):
for col in range(cols):
gray = 0.11*image[row,col,0]+0.59*image[row,col,1]+0.3*image[row,col,2]
image[row, col, :] = gray
cv2.imshow('formula image', image)
cv2.waitKey()
cv2.destroyAllWindows()
1.7.3 cvtColor灰度化
import numpy as np
import cv2
image = cv2.imread('測(cè)試頭像圖片路徑')
cvt_image = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
cv2.imshow('cvtColor image', cvt_image)
cv2.waitKey()
cv2.destroyAllWindows()
1.8 圖片加噪
加噪->圖片變的不清晰骑丸。
原理:隨機(jī)的將素點(diǎn)替換為其他值,比如[225,20,19]
import numpy as np
import cv2
image = cv2.imread('測(cè)試頭像路徑')
rows = image.shape[0]
cols = image.shape[1]
#給圖片隨機(jī)加加5000個(gè)噪點(diǎn)
noises = 5000
for i in range(noises):
#從(0妒貌,rows)或(0通危,cols)隨機(jī)生成一個(gè)整數(shù)
row = np.random.randint(0, rows)
col = np.random.randint(0, cols)
image[row, col, :] = np.array([225,20,19])
cv2.imshow('noise image', image)
cv2.waitKey()
cv2.destroyAllWindows()