一鄉(xiāng)二里共三夫子不識(shí)四書五經(jīng)六義竟敢教七八九子十分大膽巧号!
十室九貧 湊得八兩七錢六分五毫四厘 尚且三心二意 一等下流
前言
這里,不談spark原理氮兵,作用裂逐,使用場(chǎng)景等,只是一個(gè)spark與java打通的一個(gè)過程泣栈〔犯撸看似簡(jiǎn)單,整整花了哥兩天的時(shí)間南片,版本號(hào)的坑掺涛,服務(wù)器的坑等等,頭脹的能飄起來疼进!按照我下面說的環(huán)境和步驟去做薪缆,保證你99%能一次跑過,因?yàn)槲沂且贿厡懘似贿呍谛碌奶摂M機(jī)配置伞广。一切都o(jì)k
環(huán)境
名稱 | 版本號(hào) |
---|---|
Linux | CentOS Linux release 7.0.1406 (Core) |
jdk | 1.8.0_121 OpenJDK 64-Bit Server VM (build 25.121-b13, mixed mode) |
scala | Scala code runner version 2.10.4 -- Copyright 2002-2013, LAMP/EPFL |
spark | spark-1.6.2-bin-hadoop2.6 |
環(huán)境部署(超詳細(xì))
最好把當(dāng)前Linux的鏡像庫文件更換掉拣帽,這里我用的是163的 傳送門 講解得很詳細(xì)
卸掉默認(rèn)的jdk版本
[root@localhost ~]# rpm -qa|grep jdk
java-1.7.0-openjdk-headless-1.7.0.51-2.4.5.5.el7.x86_64
java-1.7.0-openjdk-1.7.0.51-2.4.5.5.el7.x86_64
得到目前jdk的版本疼电,然后刪除
yum -y remove java java-1.7.0-openjdk-headless-1.7.0.51-2.4.5.5.el7.x86_64
然后安裝下載好的jdk,用到的軟件都放在了文末减拭,或者自己去下載或者去各自的官網(wǎng)下載
tar -xvzf jdk-8u121-linux-x64.tar.gz
解壓好之后蔽豺,創(chuàng)建個(gè)軟連接,方便以后更改版本
ln -sf /usr/local/software/jdk1.8.0_121/ /usr/local/jdk
按照此方法分別對(duì)scala和spark操作拧粪,配置后結(jié)果如下
.
├── bin
├── etc
├── games
├── include
├── jdk -> /usr/local/software/jdk1.8.0_121
├── lib
├── lib64
├── libexec
├── sbin
├── scala -> /usr/local/software/scala-2.10.4
├── share
├── software
├── spark -> /usr/local/software/spark-1.6.2-bin-hadoop2.6
└── src
然后將其分別添加到系統(tǒng)的全局變量
vi /etc/profile
在文件的最末端添加下面代碼修陡,注意格式
export JAVA_HOME=/usr/local/jdk
export SCALA_HOME=/usr/local/scala
export SPARK_HOME=/usr/local/spark
export PATH=.:${JAVA_HOME}/bin:${SCALA_HOME}/bin:${SPARK_HOME}/bin:$PATH
最后一定要執(zhí)行下面命令,作用就是即時(shí)生效
source /etc/profile
然后就可以查看版本號(hào)了
java -version
scala -version
到此可霎,spark的環(huán)境就部署好了魄鸦,我這邊代碼依賴管理用的是maven,還需要配置下maven環(huán)境癣朗,
這里我直接用的yum安裝了
yum install maven
等待安裝完畢拾因,在改一下maven的中央倉庫鏡像地址,否咋斯棒,spark需要的幾個(gè)jar包會(huì)下載到你怕為止.
這里maven的地址可以通過mvn -version
去查看
Maven home: /usr/share/maven
Java version: 1.8.0_121, vendor: Oracle Corporation
Java home: /usr/local/software/jdk1.8.0_121/jre
Default locale: en_US, platform encoding: UTF-8
OS name: "linux", version: "3.10.0-123.el7.x86_64", arch: "amd64", family: "unix"
都給你列出來了233333
然后修改mirrors
vi /usr/share/maven/conf/settings.xml
找到節(jié)點(diǎn)<mirrors/>
添加阿里云的鏡像地址
<mirror>
<id>alimaven</id>
<name>aliyun maven</name>
<url>http://maven.aliyun.com/nexus/content/groups/public/</url>
<mirrorOf>central</mirrorOf>
</mirror>
保存一下盾致,ok
啟動(dòng)spark服務(wù)
在啟動(dòng)之前,還需要做些處理
在spark的conf中荣暮,修改下配置文件
cp spark-env.sh.template spark-env.sh
vi spark-env.sh.template
再開頭添加環(huán)境
export JAVA_HOME=/usr/local/jdk
export SCALA_HOME=/usr/local/scala
我也不知道這里為什么也要配置庭惜。。穗酥。
回到spark根目錄
sbin/start-master.sh
在主機(jī)網(wǎng)頁輸入地址http://yourip:8080/
訪問,如果訪問不到护赊,說明虛擬機(jī)的防火墻打開了,這里要關(guān)掉
service firewalld stop
再次刷新頁面砾跃,ok骏啰,如下
這里還要繼續(xù)啟動(dòng)worker
bin/spark-class org.apache.spark.deploy.worker.Worker spark://localhost.localdomain:7077
再刷新下頁面,ok抽高,如下
編寫Java代碼
這里說一下判耕,spark支持java、scala和python翘骂,無論用什么都只是對(duì)業(yè)務(wù)的封裝壁熄,當(dāng)然了原配是scala,我這里使用的java去實(shí)現(xiàn)一個(gè)計(jì)數(shù)程序碳竟,(目前網(wǎng)上有關(guān)spark的教程的第一個(gè)demo都是計(jì)數(shù)程序草丧,我簡(jiǎn)稱spark為“hello wordcount”),我用maven來管理依賴關(guān)系,這個(gè)版本號(hào)一定要 注意莹桅!注意昌执!注意!
本地的要和虛擬機(jī)里配置的要一毛一樣!6啊煤禽!
代碼很簡(jiǎn)單,怎么計(jì)數(shù)自己去實(shí)現(xiàn)
public class WorldCount {
private static final Pattern SPACE = Pattern.compile(" ");
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("vector's first spark app");
JavaSparkContext sc = new JavaSparkContext(conf);
//C:\Users\bd2\Downloads
JavaRDD<String> lines = sc.textFile("/opt/blsmy.txt").cache();;
JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
public Iterable<String> call(String s) throws Exception {
return Arrays.asList(SPACE.split(s));
}
private static final long serialVersionUID = 1L;
});
JavaPairRDD<String, Integer> ones = words.mapToPair(new PairFunction<String, String, Integer>() {
private static final long serialVersionUID = 1L;
public Tuple2<String, Integer> call(String s) {
return new Tuple2<String, Integer>(s, 1);
}
});
JavaPairRDD<String, Integer> counts = ones.reduceByKey(new Function2<Integer, Integer, Integer>() {
private static final long serialVersionUID = 1L;
public Integer call(Integer i1, Integer i2) {
return i1 + i2;
}
});
List<Tuple2<String, Integer>> output = counts.collect();
for (Tuple2<?, ?> tuple : output) {
System.out.println(tuple._1() + ": " + tuple._2());
}
sc.close();
}
}
注意這里沒有.setMaster()
,這個(gè)參數(shù)在虛擬機(jī)執(zhí)行的時(shí)候通過手動(dòng)配置
再來就是依賴配置文件pom委粉,我已經(jīng)親測(cè)呜师,可以直接拿過去用
<properties>
<scala.version>2.10.4</scala.version>
<spark.version>1.6.2</spark.version>
</properties>
<dependencies>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
<dependency>
<groupId>com.googlecode.json-simple</groupId>
<artifactId>json-simple</artifactId>
<version>1.1.1</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.10</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-launcher_2.10</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-mllib_2.10</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.10</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.4</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.specs</groupId>
<artifactId>specs</artifactId>
<version>1.2.5</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.ansj</groupId>
<artifactId>ansj_seg</artifactId>
<version>5.1.1</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>2.3</version>
<configuration>
<appendAssemblyId>false</appendAssemblyId>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
<archive>
<manifest>
<mainClass>WorldCount</mainClass><!--man方法入口-->
</manifest>
</archive>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>assembly</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
打jar包的時(shí)候,我建議將src和pom上傳到虛擬機(jī)贾节,在虛擬機(jī)里打包,因?yàn)榇虺蒵ar包后大概有上百兆大小衷畦,我是在虛擬機(jī)打包的,如下
[root@localhost co]# ll
total 8
-rw-r--r--. 1 root root 3401 Apr 14 13:47 pom.xml
-rw-r--r--. 1 root root 2610 Apr 14 16:35 sparkjar.zip
drwxr-xr-x. 4 root root 28 Apr 14 09:00 src
[root@localhost co]# mvn package
第一次打包的時(shí)候可能會(huì)用到十幾分鐘的時(shí)間栗涂,因?yàn)樾枰玫降陌嗔恕4虬晒χ笃碚涀?duì)應(yīng)jar包地址
提交任務(wù)給spark
我這里下載了英文版的《巴黎圣母院》作為解析文本斤程,并放在了/opt/
目錄下
bin/spark-submit --master spark://localhost.localdomain:7077 --class WorldCount /usr/local/co/target/spark.jar-1.0-SNAPSHOT.jar
沒有特殊情況的話,結(jié)果會(huì)輸出在屏幕上菩混,部分如下
Djali!: 2
faintly: 7
bellow: 1
prejudice: 1
singing: 15
Pierre.??: 1
incalculable: 1
defensive,: 1
slices: 1
niggardly: 1
Watch: 2
silence,: 14
water.??: 1
inhumanly: 1
17/04/14 16:59:35 INFO SparkUI: Stopped Spark web UI at http://192.168.22.129:4040
到此一個(gè)spark與java程序徹底打通了忿墅。。沮峡。
后續(xù)疚脐,我會(huì)使用spark對(duì)公司項(xiàng)目進(jìn)行改造,將數(shù)據(jù)處理交給spark去做邢疙。我會(huì)一一記錄分享出來
總結(jié)
- 環(huán)境部署的要正確棍弄,版本號(hào)要統(tǒng)一
- spark啟動(dòng)的順序
-
sbin/start-master.sh
# 啟動(dòng)服務(wù) -
bin/spark-class org.apache.spark.deploy.worker.Worker spark://localhost.localdomain:7077
# 啟動(dòng)worker -
bin/spark-submit --master spark://localhost.localdomain:7077 --class WorldCount /usr/local/code/target/spark.jar-1.0-SNAPSHOT.jar
# 提交任務(wù)
名稱 | 地址 |
---|---|
用到的軟件 | http://pan.baidu.com/s/1skN5NS5 密碼:ufhk |
Java計(jì)數(shù)程序 | http://download.csdn.net/download/qqhjqs/9814285 |
《巴黎圣母院》 | 鏈接:http://pan.baidu.com/s/1qXZJedI 密碼:vljg |
碼字不易,看客給個(gè)茶錢~