MYSQL語(yǔ)句

  1. 查詢小于某個(gè)時(shí)間
SELECT COUNT(*) FROM auth_user
WHERE date_joined <= '2017-06-04';
# 加了時(shí)區(qū)進(jìn)行查詢改艇,東八區(qū)碱妆,上海奕污,顯示北京時(shí)間
SELECT count(1) FROM auth_user
WHERE (date_joined + INTERVAL 8 HOUR) <= '2017-06-05';
  1. hue中日常用到的語(yǔ)句

獲取周報(bào)---先不用

select * from t_week_mail

獲取developer---先不用

SELECT
u.id,u.email,u.username,u.last_login,u.date_joined,f.mobile,f.qq,f.address
FROM
default.mysql_auth_user u
LEFT JOIN
default.mysql_gizwits_site_userprofile
f
on u.id = f.user_id

獲取auth_user

SELECT * from mysql_auth_user

獲取mysql_organization

select * from mysql_organization

獲取gizwits_site_userprofile

select * from mysql_gizwits_site_userprofile

獲取mysql_gizwits_site_member (role_id)

select * from mysql_gizwits_site_member

獲取device_count

select 
p.user_id,
t.total_device as dev_count
from 
(
select 
lower(product_key) as pk,
SUM(device_count) AS total_device
from
analyzedb.t_incr_device 
group by  lower(product_key)
)  t
right join default.mysql_gizwits_site_product p
on lower(t.pk) = lower(p.product_key)

獲取new_device

SELECT p.verbose_name,p.product_key,o.name as com_name,p.user_id,p.type,
d.device_count,d.created_at
from default.mysql_gizwits_site_product p
left join analyzedb.t_incr_device d
on d.product_key = p.product_key
left join default.mysql_organization o 
on p.organization_id = o.id
  1. 還在嘗試
SELECT p.id, p.product_key, p.verbose_name, p.is_adaptive_datapoint, d.device_count, c.product_id, o.name as organization_name
FROM default.mysql_gizwits_site_product as p LEFT JOIN default.mysql_gizwits_site_centralcontrolproduct as c
on p.id = c.product_id
LEFT JOIN analyzedb.t_incr_device as d on lower(p.product_key) = lower(d.product_key) 
LEFT JOIN default.mysql_organization as o on p.organization_id = o.id
  1. 新語(yǔ)句
    query_result
select 
p.id, 
p.product_key,
p.verbose_name,
p.is_adaptive_datapoint,
t.total_device,
c.product_id,
o.name as organization_name
from 
(
select 
 lower(product_key) as pk,
 SUM(device_count) AS total_device
from
analyzedb.t_incr_device 
group by  lower(product_key)
)  t
right join default.mysql_gizwits_site_product p
on lower(t.pk) = lower(p.product_key)
left join default.mysql_gizwits_site_centralcontrolproduct c 
on p.id = c.product_id
left join default.mysql_organization o 
on p.organization_id = o.id

mongo_device

select m.product_key, m.is_codegen 
from default.mongo_device m
where (m.year >= 2017) and (m.month >= 6) and (m.day >= 14) and (m.is_codegen = true)
select 
    lower(product_key),
    SUM(device_count) AS total_device
from
analyzedb.t_incr_device 
group by lower(product_key)

最后匯總

select 
p.id, 
p.product_key,
p.verbose_name,
p.is_adaptive_datapoint,
t.total_device,
c.product_id,
o.name as organization_name,
mongo.product_key, mongo.is_codegen
from 
(
select 
lower(product_key) as pk,
SUM(device_count) AS total_device
from
analyzedb.t_incr_device 
group by  lower(product_key)
)  t
right join default.mysql_gizwits_site_product p
on lower(t.pk) = lower(p.product_key)
left join default.mysql_gizwits_site_centralcontrolproduct c 
on p.id = c.product_id
left join default.mysql_organization o 
on p.organization_id = o.id
left join (select m.product_key, m.is_codegen 
from default.mongo_device m
where (m.year >= 2017) and (m.month >= 6) and (m.day >= 14) and (m.is_codegen = true)) mongo
on lower(mongo.product_key) = lower(p.product_key)

會(huì)不會(huì)忘記加distinct

select count(mac) from mongo_device where year = 2017 and month=6 and is_codegen=true and default.mac2type(mac)='NORMAL_MAC'
  1. 可能用到的
SELECT * from superset_retention
order by time DESC
limit 3
like
select * from mysql_gizwits_site_product where verbose_name like '%Allpay%'
select * from mysql_organization where name like '%奧付云%'

奧付云(AllpayV2_1正式平臺(tái))的設(shè)備累計(jì)數(shù)

select * from analyzedb.t_incr_device where product_key = '41755b79b566447d9b217c20bfaac91f'
select  
sum(device_count) 
from   analyzedb.t_incr_device  
where created_at<20170301  and   lower(product_key)="41755b79b566447d9b217c20bfaac91f"
select
     incr.created_at as created_at,
     SUM(incr.count) OVER (ORDER BY  incr.created_at ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS device_count
   from (
     select  
    created_at ,
     CASE  WHEN created_at=20170301  then sum(device_count)+8250  else sum(device_count)   end  as count
    from   analyzedb.t_incr_device  
    where created_at>=20170301  and   lower(product_key)="41755b79b566447d9b217c20bfaac91f"  group by   created_at
   )  incr
bumblebee
SELECT * FROM `device_settings` where device_id in 
(select device_id from device_settings GROUP BY device_id HAVING count(device_id) > 1);


獲取user_id 和 dev_count

select 
p.user_id,
t.total_device as dev_count
from 
(
select 
lower(product_key) as pk,
SUM(device_count) AS total_device
from
analyzedb.t_incr_device 
group by  lower(product_key)
)  t
right join default.mysql_gizwits_site_product p
on lower(t.pk) = lower(p.product_key)
最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子甜孤,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 216,544評(píng)論 6 501
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件者祖,死亡現(xiàn)場(chǎng)離奇詭異,居然都是意外死亡绢彤,警方通過(guò)查閱死者的電腦和手機(jī)七问,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 92,430評(píng)論 3 392
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái)茫舶,“玉大人械巡,你說(shuō)我怎么就攤上這事∪氖希” “怎么了讥耗?”我有些...
    開(kāi)封第一講書(shū)人閱讀 162,764評(píng)論 0 353
  • 文/不壞的土叔 我叫張陵遭居,是天一觀的道長(zhǎng)沙绝。 經(jīng)常有香客問(wèn)我猫胁,道長(zhǎng)衩辟,這世上最難降的妖魔是什么照捡? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 58,193評(píng)論 1 292
  • 正文 為了忘掉前任知市,我火速辦了婚禮先舷,結(jié)果婚禮上愕掏,老公的妹妹穿的比我還像新娘贷祈。我一直安慰自己趋急,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,216評(píng)論 6 388
  • 文/花漫 我一把揭開(kāi)白布势誊。 她就那樣靜靜地躺著呜达,像睡著了一般。 火紅的嫁衣襯著肌膚如雪粟耻。 梳的紋絲不亂的頭發(fā)上查近,一...
    開(kāi)封第一講書(shū)人閱讀 51,182評(píng)論 1 299
  • 那天,我揣著相機(jī)與錄音挤忙,去河邊找鬼霜威。 笑死,一個(gè)胖子當(dāng)著我的面吹牛册烈,可吹牛的內(nèi)容都是我干的戈泼。 我是一名探鬼主播,決...
    沈念sama閱讀 40,063評(píng)論 3 418
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼大猛!你這毒婦竟也來(lái)了扭倾?” 一聲冷哼從身側(cè)響起,我...
    開(kāi)封第一講書(shū)人閱讀 38,917評(píng)論 0 274
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤挽绩,失蹤者是張志新(化名)和其女友劉穎膛壹,沒(méi)想到半個(gè)月后,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體唉堪,經(jīng)...
    沈念sama閱讀 45,329評(píng)論 1 310
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡模聋,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,543評(píng)論 2 332
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了唠亚。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片撬槽。...
    茶點(diǎn)故事閱讀 39,722評(píng)論 1 348
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖趾撵,靈堂內(nèi)的尸體忽然破棺而出侄柔,到底是詐尸還是另有隱情,我是刑警寧澤占调,帶...
    沈念sama閱讀 35,425評(píng)論 5 343
  • 正文 年R本政府宣布暂题,位于F島的核電站,受9級(jí)特大地震影響究珊,放射性物質(zhì)發(fā)生泄漏薪者。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,019評(píng)論 3 326
  • 文/蒙蒙 一剿涮、第九天 我趴在偏房一處隱蔽的房頂上張望言津。 院中可真熱鬧,春花似錦取试、人聲如沸悬槽。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 31,671評(píng)論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)初婆。三九已至,卻和暖如春猿棉,著一層夾襖步出監(jiān)牢的瞬間磅叛,已是汗流浹背。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 32,825評(píng)論 1 269
  • 我被黑心中介騙來(lái)泰國(guó)打工萨赁, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留弊琴,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 47,729評(píng)論 2 368
  • 正文 我出身青樓杖爽,卻偏偏與公主長(zhǎng)得像敲董,于是被迫代替她去往敵國(guó)和親详瑞。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 44,614評(píng)論 2 353

推薦閱讀更多精彩內(nèi)容

  • 1臣缀、說(shuō)明:創(chuàng)建數(shù)據(jù)庫(kù)CREATE DATABASE database-name2、說(shuō)明:刪除數(shù)據(jù)庫(kù)drop dat...
    codeSirCao閱讀 434評(píng)論 0 2
  • 在安裝在mysql之后,還沒(méi)有用可視化的軟件使用數(shù)據(jù)庫(kù),我們只能使用cmd 終端 來(lái)創(chuàng)建并使用數(shù)據(jù)庫(kù),接下來(lái)我們就...
    Miss_差不多閱讀 292評(píng)論 0 1
  • 讀《詩(shī)的八堂課》的情景不難忘泻帮,地鐵中精置、餐館中、公園中锣杂、宿舍中……難忘的是我重讀這本書(shū)的八個(gè)夜晚脂倦,一天重讀一堂課,一...
    陳素封閱讀 641評(píng)論 1 8
  • 前段時(shí)間,讀過(guò)一本名叫《貧窮的本質(zhì)》的書(shū)踱蠢,書(shū)中的提出了幾點(diǎn)關(guān)于窮人為什么會(huì)窮的觀點(diǎn)火欧,值得深思,今晚分享給大家茎截。 首...
    奕風(fēng)少年520閱讀 516評(píng)論 0 3
  • 缺版即功課苇侵,我的缺通過(guò)身邊最親近的人來(lái)顯化,早餐悟出一語(yǔ)企锌。 我的人間使命是服務(wù)好老公榆浓、孩子、進(jìn)而使自我提升...
    初露倪兒閱讀 240評(píng)論 0 0