Pandas璧榄、Matplotlib、PCA繪圖實用代碼補充

這篇文章主要是最近整理《數(shù)據(jù)挖掘與分析》課程中的作品及課件過程中吧雹,收集了幾段比較好的代碼供大家學習骨杂。同時,做數(shù)據(jù)分析到后面吮炕,除非是研究算法創(chuàng)新的腊脱,否則越來越覺得數(shù)據(jù)非常重要访得,才是有價值的東西龙亲。后面的課程會慢慢講解Python應(yīng)用在Hadoop和Spark中,以及networkx數(shù)據(jù)科學等知識悍抑。

如果文章中存在錯誤或不足之處鳄炉,還請海涵~希望文章對你有所幫助。

一. Pandas獲取數(shù)據(jù)集并顯示

采用Pandas對2002年~2014年的商品房價數(shù)據(jù)集作時間序列分析搜骡,從中抽取幾個城市與貴陽做對比拂盯,并對貴陽商品房作出分析。

數(shù)據(jù)集位32.csv记靡,具體值如下:(讀者可直接復(fù)制)

year????Beijing?Chongqing???Shenzhen????Guiyang?Kunming?Shanghai????Wuhai???Changsha??

2002????4764.00?????1556.00?????5802.00?????1643.00?????2276.00?????4134.00?????1928.00?????1802.00???

2003????4737.00?????1596.00?????6256.00?????1949.00?????2233.00?????5118.00?????2072.00?????2040.00???

2004????5020.93?????1766.24?????6756.24?????1801.68?????2473.78?????5855.00?????2516.32?????2039.09???

2005????6788.09?????2134.99?????7582.27?????2168.90?????2639.72?????6842.00?????3061.77?????2313.73???

2006????8279.51?????2269.21?????9385.34?????2372.66?????2903.32?????7196.00?????3689.64?????2644.15???

2007????11553.26????2722.58?????14049.69????2901.63?????3108.12?????8361.00?????4664.03?????3304.74???

2008????12418.00????2785.00?????12665.00????3149.00?????3750.00?????8195.00?????4781.00?????3288.00???

2009????13799.00????3442.00?????14615.00????3762.00?????3807.00?????12840.00????5329.00?????3648.00???

2010????17782.00????4281.00?????19170.00????4410.00?????3660.00?????14464.00????5746.00?????4418.00???

2011????16851.95????4733.84?????21350.13????5069.52?????4715.23?????14603.24????7192.90?????5862.39???

2012????17021.63????5079.93?????19589.82????4846.14?????5744.68?????14061.37????7344.05?????6100.87???

2013????18553.00????5569.00?????24402.00????5025.00?????5795.00?????16420.00????7717.00?????6292.00???

2014????18833.00????5519.00?????24723.00????5608.00?????6384.00?????16787.00????7951.00?????6116.00??


繪制對比各個城市的商品房價數(shù)據(jù)代碼如下所示:

#?-*-?coding:?utf-8?-*-??

"""

Created?on?Mon?Mar?06?10:55:17?2017

@author:?eastmount

"""??


import?pandas?as?pd??

data?=?pd.read_csv("32.csv",index_col='year')?#index_col用作行索引的列名???

#顯示前6行數(shù)據(jù)???

print(data.shape)????

print(data.head(6))??


import?matplotlib.pyplot?as?plt??

plt.rcParams['font.sans-serif']?=?['simHei']?#用來正常顯示中文標簽??

plt.rcParams['axes.unicode_minus']?=?False???#用來正常顯示負號??

data.plot()??

plt.savefig(u'時序圖.png',?dpi=500)??

plt.show()??


輸出如下所示:


重點知識:

1谈竿、plt.rcParams顯示中文及負號团驱;

2、plt.savefig保存圖片至本地空凸;

3嚎花、pandas直接讀取數(shù)據(jù)顯示繪制圖形,index_col獲取索引呀洲。

二. Pandas獲取某列數(shù)據(jù)繪制柱狀圖

接著上面的實驗紊选,我們需要獲取貴陽那列數(shù)據(jù),再繪制相關(guān)圖形道逗。

#?-*-?coding:?utf-8?-*-??

"""

Created?on?Mon?Mar?06?10:55:17?2017

@author:?eastmount

"""??


import?pandas?as?pd??

data?=?pd.read_csv("32.csv",index_col='year')?#index_col用作行索引的列名???

#顯示前6行數(shù)據(jù)???

print(data.shape)????

print(data.head(6))??


import?matplotlib.pyplot?as?plt??

plt.rcParams['font.sans-serif']?=?['simHei']?#用來正常顯示中文標簽??

plt.rcParams['axes.unicode_minus']?=?False???#用來正常顯示負號??

data.plot()??

plt.savefig(u'時序圖.png',?dpi=500)??

plt.show()??


#獲取貴陽數(shù)據(jù)集并繪圖??

gy?=?data['Guiyang']??

print?u'輸出貴陽數(shù)據(jù)'??

print?gy??

gy.plot()??

plt.show()??

通過data['Guiyang']獲取某列數(shù)據(jù)兵罢,然后再進行繪制如下所示:

通過這個數(shù)據(jù)集調(diào)用bar函數(shù)可以繪制對應(yīng)的柱狀圖,如下所示滓窍,需要注意x軸位年份卖词,獲取兩列數(shù)據(jù)進行繪圖。


#?-*-?coding:?utf-8?-*-??

"""

Created?on?Mon?Mar?06?10:55:17?2017

@author:?eastmount

"""??


import?pandas?as?pd??

data?=?pd.read_csv("32.csv",index_col='year')?#index_col用作行索引的列名???

#顯示前6行數(shù)據(jù)???

print(data.shape)????

print(data.head(6))??

#獲取貴陽數(shù)據(jù)集并繪圖??

gy?=?data['Guiyang']??

print?u'輸出貴陽數(shù)據(jù)'??

print?gy??


import?numpy?as?np??

x?=?['2002','2003','2004','2005','2006','2007','2008',??

'2009','2010','2011','2012','2013','2014']??

N?=13??

ind?=?np.arange(N)#賦值0-13??

width=0.35??

plt.bar(ind,?gy,?width,?color='r',?label='sum?num')???

#設(shè)置底部名稱????

plt.xticks(ind+width/2,?x,?rotation=40)?#旋轉(zhuǎn)40度????

plt.title('The?price?of?Guiyang')????

plt.xlabel('year')????

plt.ylabel('price')????

plt.savefig('guiyang.png',dpi=400)????

plt.show()??

輸出如下圖所示:


補充一段hist繪制柱狀圖的代碼:

import?numpy?as?np??

import?pylab?as?pl??

#?make?an?array?of?random?numbers?with?a?gaussian?distribution?with??

#?mean?=?5.0??

#?rms?=?3.0??

#?number?of?points?=?1000??

data?=?np.random.normal(5.0,?3.0,?1000)??

#?make?a?histogram?of?the?data?array??

pl.hist(data,?histtype='stepfilled')?#去掉黑色輪廓??

#?make?plot?labels??

pl.xlabel('data')???

pl.show()??

輸出如下圖所示:

推薦文章:http://www.cnblogs.com/jasonfreak/p/5441512.html

三. Python繪制時間序列-自相關(guān)圖

核心代碼如下所示:

#?-*-?coding:?utf-8?-*-??

"""

Created?on?Mon?Mar?06?10:55:17?2017

@author:?yxz15

"""??


import?pandas?as?pd??

data?=?pd.read_csv("32.csv",index_col='year')??

#顯示前6行數(shù)據(jù)????

print(data.shape)????

print(data.head(6))??


import?matplotlib.pyplot?as?plt??

plt.rcParams['font.sans-serif']?=?['simHei']??

plt.rcParams['axes.unicode_minus']?=?False??

data.plot()??

plt.savefig(u'時序圖.png',?dpi=500)??

plt.show()??


from?statsmodels.graphics.tsaplots?import?plot_acf??

gy?=?data['Guiyang']??

print?gy??

plot_acf(gy).show()??

plt.savefig(u'貴陽自相關(guān)圖',dpi=300)??


from?statsmodels.tsa.stattools?import?adfuller?as?ADF??

print?'ADF:',ADF(gy)??

輸出結(jié)果如下所示:

時間序列相關(guān)文章推薦:

python時間序列分析

個股與指數(shù)的回歸分析(python)

Python_Statsmodels包_時間序列分析_ARIMA模型

四. 聚類分析大連交易所數(shù)據(jù)集

這部分主要提供一個網(wǎng)址給大家下載數(shù)據(jù)集吏夯,前面文章說過sklearn自帶一些數(shù)據(jù)集以及UCI官網(wǎng)提供大量的數(shù)據(jù)集坏平。這里講述一個大連商品交易所的數(shù)據(jù)集。

地址:http://www.dce.com.cn/dalianshangpin/xqsj/lssj/index.html#

比如下載"焦炭"數(shù)據(jù)集锦亦,命名為"35.csv"舶替,在對其進行聚類分析。

代碼如下:

#?-*-?coding:?utf-8?-*-??

"""

Created?on?Mon?Mar?06?10:19:15?2017

@author:?yxz15

"""??


#第一部分:導(dǎo)入數(shù)據(jù)集??

import?pandas?as?pd??

Coke1?=pd.read_csv("35.csv")??

print?Coke1?[:4]??



#第二部分:聚類??

from?sklearn.cluster?import?KMeans??

clf=KMeans(n_clusters=3)??

pre=clf.fit_predict(Coke1)??

print?pre[:4]??


#第三部分:降維??

from?sklearn.decomposition?import?PCA??

pca=PCA(n_components=2)??

newData=pca.fit_transform(Coke1)??

print?newData[:4]??

x1=[n[0]?for?n?in?newData]??

x2=[n[1]?for?n?in?newData]??



#第四部分:用matplotlib包畫圖??

import?matplotlib.pyplot?as?plt??

plt.title??

plt.xlabel("x?feature")??

plt.ylabel("y?feature")??

plt.scatter(x1,x2,c=pre,?marker='x')??

plt.savefig("bankloan.png",dpi=400)??

plt.show()??

? ??出如下圖所示:


五. PCA降維及繪圖代碼

PCA降維繪圖參考這篇博客杠园。

http://blog.csdn.net/xiaolewennofollow/article/details/46127485

代碼如下:

#?-*-?coding:?utf-8?-*-??

"""

Created?on?Mon?Mar?06?21:47:46?2017

@author:?yxz

"""??


from?numpy?import?*??


def?loadDataSet(fileName,delim='\t'):??

????fr=open(fileName)??

stringArr=[line.strip().split(delim)for?line?in?fr.readlines()]??

datArr=[map(float,line)for?line?in?stringArr]??

return?mat(datArr)??


def?pca(dataMat,topNfeat=9999999):??

meanVals=mean(dataMat,axis=0)??

????meanRemoved=dataMat-meanVals??

covMat=cov(meanRemoved,rowvar=0)??

????eigVals,eigVets=linalg.eig(mat(covMat))??

????eigValInd=argsort(eigVals)??

eigValInd=eigValInd[:-(topNfeat+1):-1]??

????redEigVects=eigVets[:,eigValInd]??

print?meanRemoved??

print?redEigVects??

????lowDDatMat=meanRemoved*redEigVects??

????reconMat=(lowDDatMat*redEigVects.T)+meanVals??

return?lowDDatMat,reconMat??

dataMat=loadDataSet('41.txt')??

lowDMat,reconMat=pca(dataMat,1)??


def?plotPCA(dataMat,reconMat):??

import?matplotlib??

import?matplotlib.pyplot?as?plt??

????datArr=array(dataMat)??

????reconArr=array(reconMat)??

n1=shape(datArr)[0]??

n2=shape(reconArr)[0]??

????xcord1=[];ycord1=[]??

????xcord2=[];ycord2=[]??

for?i?in?range(n1):??

xcord1.append(datArr[i,0]);ycord1.append(datArr[i,1])??

for?i?in?range(n2):??

xcord2.append(reconArr[i,0]);ycord2.append(reconArr[i,1])??

????fig=plt.figure()??

ax=fig.add_subplot(111)??

ax.scatter(xcord1,ycord1,s=90,c='red',marker='^')??

ax.scatter(xcord2,ycord2,s=50,c='yellow',marker='o')??

plt.title('PCA')??

plt.savefig('ccc.png',dpi=400)??

????plt.show()??

plotPCA(dataMat,reconMat)??

輸出結(jié)果如下圖所示:


采用PCA方法對數(shù)據(jù)集進行降維操作漠趁,即將紅色三角形數(shù)據(jù)降維至黃色直線上,一個平面降低成一條直線废恋。PCA的本質(zhì)就是對角化協(xié)方差矩陣辩恼,對一個n*n的對稱矩陣進行分解,然后把矩陣投影到這N個基上瞧甩。

數(shù)據(jù)集為41.txt钉跷,值如下:

61.5????55??

59.8????61??

56.9????65??

62.4????58??

63.3????58??

62.8????57??

62.3????57??

61.9????55??

65.1????61??

59.4????61??

64??55??

62.8????56??

60.4????61??

62.2????54??

60.2????62??

60.9????58??

62??54??

63.4????54??

63.8????56??

62.7????59??

63.3????56??

63.8????55??

61??57??

59.4????62??

58.1????62??

60.4????58??

62.5????57??

62.2????57??

60.5????61??

60.9????57??

60??57??

59.8????57??

60.7????59??

59.5????58??

61.9????58??

58.2????59??

64.1????59??

64??54??

60.8????59??

61.8????55??

61.2????56??

61.1????56??

65.2????56??

58.4????63??

63.1????56??

62.4????58??

61.8????55??

63.8????56??

63.3????60??

60.7????60??

60.9????61??

61.9????54??

60.9????55??

61.6????58??

59.3????62??

61??59??

59.3????61??

62.6????57??

63??57??

63.2????55??

60.9????57??

62.6????59??

62.5????57??

62.1????56??

61.5????59??

61.4????56??

62??55.3??

63.3????57??

61.8????58??

60.7????58??

61.5????60??

63.1????56??

62.9????59??

62.5????57??

63.7????57??

59.2????60??

59.9????58??

62.4????54??

62.8????60??

62.6????59??

63.4????59??

62.1????60??

62.9????58??

61.6????56??

57.9????60??

62.3????59??

61.2????58??

60.8????59??

60.7????58??

62.9????58??

62.5????57??

55.1????69??

61.6????56??

62.4????57??

63.8????56??

57.5????58??

59.4????62??

66.3????62??

61.6????59??

61.5????58??

63.2????56??

59.9????54??

61.6????55??

61.7????58??

62.9????56??

62.2????55??

63??59??

62.3????55??

58.8????57??

62??55??

61.4????57??

62.2????56??

63??58??

62.2????59??

62.6????56??

62.7????53??

61.7????58??

62.4????54??

60.7????58??

59.9????59??

62.3????56??

62.3????54??

61.7????63??

64.5????57??

65.3????55??

61.6????60??

61.4????56??

59.6????57??

64.4????57??

65.7????60??

62??56??

63.6????58??

61.9????59??

62.6????60??

61.3????60??

60.9????60??

60.1????62??

61.8????59??

61.2????57??

61.9????56??

60.9????57??

59.8????56??

61.8????55??

60??57??

61.6????55??

62.1????64??

63.3????59??

60.2????56??

61.1????58??

60.9????57??

61.7????59??

61.3????56??

62.5????60??

61.4????59??

62.9????57??

62.4????57??

60.7????56??

60.7????58??

61.5????58??

59.9????57??

59.2????59??

60.3????56??

61.7????60??

61.9????57??

61.9????55??

60.4????59??

61??57??

61.5????55??

61.7????56??

59.2????61??

61.3????56??

58??62??

60.2????61??

61.7????55??

62.7????55??

64.6????54??

61.3????61??

63.7????56.4??

62.7????58??

62.2????57??

61.6????56??

61.5????57??

61.8????56??

60.7????56??

59.7????60.5??

60.5????56??

62.7????58??

62.1????58??

62.8????57??

63.8????58??

57.8????60??

62.1????55??

61.1????60??

60??59??

61.2????57??

62.7????59??

61??57??

61??58??

61.4????57??

61.8????61??

59.9????63??

61.3????58??

60.5????58??

64.1????59??

67.9????60??

62.4????58??

63.2????60??

61.3????55??

60.8????56??

61.7????56??

63.6????57??

61.2????58??

62.1????54??

61.5????55??

61.4????59??

61.8????60??

62.2????56??

61.2????56??

60.6????63??

57.5????64??

61.3????56??

57.2????62??

62.9????60??

63.1????58??

60.8????57??

62.7????59??

62.8????60??

55.1????67??

61.4????59??

62.2????55??

63??54??

63.7????56??

63.6????58??

62??57??

61.5????56??

60.5????60??

61.1????60??

61.8????56??

63.3????56??

59.4????64??

62.5????55??

64.5????58??

62.7????59??

64.2????52??

63.7????54??

60.4????58??

61.8????58??

63.2????56??

61.6????56??

61.6????56??

60.9????57??

61??61??

62.1????57??

60.9????60??

61.3????60??

65.8????59??

61.3????56??

58.8????59??

62.3????55??

60.1????62??

61.8????59??

63.6????55.8??

62.2????56??

59.2????59??

61.8????59??

61.3????55??

62.1????60??

60.7????60??

59.6????57??

62.2????56??

60.6????57??

62.9????57??

64.1????55??

61.3????56??

62.7????55??

63.2????56??

60.7????56??

61.9????60??

62.6????55??

60.7????60??

62??60??

63??57??

58??59??

62.9????57??

58.2????60??

63.2????58??

61.3????59??

60.3????60??

62.7????60??

61.3????58??

61.6????60??

61.9????55??

61.7????56??

61.9????58??

61.8????58??

61.6????56??

58.8????66??

61??57??

67.4????60??

63.4????60??

61.5????59??

58??62??

62.4????54??

61.9????57??

61.6????56??

62.2????59??

62.2????58??

61.3????56??

62.3????57??

61.8????57??

62.5????59??

62.9????60??

61.8????59??

62.3????56??

59??70??

60.7????55??

62.5????55??

62.7????58??

60.4????57??

62.1????58??

57.8????60??

63.8????58??

62.8????57??

62.2????58??

62.3????58??

59.9????58??

61.9????54??

63??55??

62.4????58??

62.9????58??

63.5????56??

61.3????56??

60.6????54??

65.1????58??

62.6????58??

58??62??

62.4????61??

61.3????57??

59.9????60??

60.8????58??

63.5????55??

62.2????57??

63.8????58??

64??57??

62.5????56??

62.3????58??

61.7????57??

62.2????58??

61.5????56??

61??59??

62.2????56??

61.5????54??

67.3????59??

61.7????58??

61.9????56??

61.8????58??

58.7????66??

62.5????57??

62.8????56??

61.1????68??

64??57??

62.5????60??

60.6????58??

61.6????55??

62.2????58??

60??57??

61.9????57??

62.8????57??

62??57??

66.4????59??

63.4????56??

60.9????56??

63.1????57??

63.1????59??

59.2????57??

60.7????54??

64.6????56??

61.8????56??

59.9????60??

61.7????55??

62.8????61??

62.7????57??

63.4????58??

63.5????54??

65.7????59??

68.1????56??

63??60??

59.5????58??

63.5????59??

61.7????58??

62.7????58??

62.8????58??

62.4????57??

61??59??

63.1????56??

60.7????57??

60.9????59??

60.1????55??

62.9????58??

63.3????56??

63.8????55??

62.9????57??

63.4????60??

63.9????55??

61.4????56??

61.9????55??

62.4????55??

61.8????58??

61.5????56??

60.4????57??

61.8????55??

62??56??

62.3????56??

61.6????56??

60.6????56??

58.4????62??

61.4????58??

61.9????56??

62??56??

61.5????57??

62.3????58??

60.9????61??

62.4????57??

55??61??

58.6????60??

62??57??

59.8????58??

63.4????55??

64.3????58??

62.2????59??

61.7????57??

61.1????59??

61.5????56??

58.5????62??

61.7????58??

60.4????56??

61.4????56??

61.5????55??

61.4????56??

65??56??

56??60??

60.2????59??

58.3????58??

53.1????63??

60.3????58??

61.4????56??

60.1????57??

63.4????55??

61.5????59??

62.7????56??

62.5????55??

61.3????56??

60.2????56??

62.7????57??

62.3????58??

61.5????56??

59.2????59??

61.8????59??

61.3????55??

61.4????58??

62.8????55??

62.8????64??

62.4????61??

59.3????60??

63??60??

61.3????60??

59.3????62??

61??57??

62.9????57??

59.6????57??

61.8????60??

62.7????57??

65.3????62??

63.8????58??

62.3????56??

59.7????63??

64.3????60??

62.9????58??

62??57??

61.6????59??

61.9????55??

61.3????58??

63.6????57??

59.6????61??

62.2????59??

61.7????55??

63.2????58??

60.8????60??

60.3????59??

60.9????60??

62.4????59??

60.2????60??

62??55??

60.8????57??

62.1????55??

62.7????60??

61.3????58??

60.2????60??

60.7????56


原文參考:http://blog.csdn.net/eastmount/article/details/60675865

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市肚逸,隨后出現(xiàn)的幾起案子爷辙,更是在濱河造成了極大的恐慌,老刑警劉巖朦促,帶你破解...
    沈念sama閱讀 211,123評論 6 490
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件膝晾,死亡現(xiàn)場離奇詭異,居然都是意外死亡务冕,警方通過查閱死者的電腦和手機血当,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 90,031評論 2 384
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人臊旭,你說我怎么就攤上這事落恼。” “怎么了离熏?”我有些...
    開封第一講書人閱讀 156,723評論 0 345
  • 文/不壞的土叔 我叫張陵领跛,是天一觀的道長。 經(jīng)常有香客問我撤奸,道長吠昭,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 56,357評論 1 283
  • 正文 為了忘掉前任胧瓜,我火速辦了婚禮矢棚,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘府喳。我一直安慰自己蒲肋,他們只是感情好,可當我...
    茶點故事閱讀 65,412評論 5 384
  • 文/花漫 我一把揭開白布钝满。 她就那樣靜靜地躺著兜粘,像睡著了一般。 火紅的嫁衣襯著肌膚如雪弯蚜。 梳的紋絲不亂的頭發(fā)上孔轴,一...
    開封第一講書人閱讀 49,760評論 1 289
  • 那天,我揣著相機與錄音碎捺,去河邊找鬼路鹰。 笑死,一個胖子當著我的面吹牛收厨,可吹牛的內(nèi)容都是我干的晋柱。 我是一名探鬼主播,決...
    沈念sama閱讀 38,904評論 3 405
  • 文/蒼蘭香墨 我猛地睜開眼诵叁,長吁一口氣:“原來是場噩夢啊……” “哼雁竞!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起拧额,我...
    開封第一講書人閱讀 37,672評論 0 266
  • 序言:老撾萬榮一對情侶失蹤碑诉,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后势腮,有當?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體联贩,經(jīng)...
    沈念sama閱讀 44,118評論 1 303
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 36,456評論 2 325
  • 正文 我和宋清朗相戀三年捎拯,在試婚紗的時候發(fā)現(xiàn)自己被綠了。 大學時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 38,599評論 1 340
  • 序言:一個原本活蹦亂跳的男人離奇死亡署照,死狀恐怖祸泪,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情建芙,我是刑警寧澤没隘,帶...
    沈念sama閱讀 34,264評論 4 328
  • 正文 年R本政府宣布,位于F島的核電站禁荸,受9級特大地震影響右蒲,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜赶熟,卻給世界環(huán)境...
    茶點故事閱讀 39,857評論 3 312
  • 文/蒙蒙 一瑰妄、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧映砖,春花似錦间坐、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,731評論 0 21
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至地技,卻和暖如春蜈七,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背莫矗。 一陣腳步聲響...
    開封第一講書人閱讀 31,956評論 1 264
  • 我被黑心中介騙來泰國打工宪潮, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人趣苏。 一個月前我還...
    沈念sama閱讀 46,286評論 2 360
  • 正文 我出身青樓狡相,卻偏偏與公主長得像,于是被迫代替她去往敵國和親食磕。 傳聞我的和親對象是個殘疾皇子尽棕,可洞房花燭夜當晚...
    茶點故事閱讀 43,465評論 2 348

推薦閱讀更多精彩內(nèi)容