R語言基礎(chǔ)
https://www.cnblogs.com/think-and-do/p/6549422.html
作圖
http://www.360doc.com/content/17/0111/15/19913717_621780543.shtml
https://blog.csdn.net/woodcorpse/column/info/19360(R語言繪圖包)
https://www.cnblogs.com/xuanlvshu/p/6129510.html(圓弧條形圖)
https://www.cnblogs.com/xudongliang/p/7884667.html(花瓣圖饲帅,組別大于5)
http://www.a-site.cn/article/193237.html (基因組展示Rcircos)
https://blog.csdn.net/qazplm12_3/article/details/76474682 (linux R 畫火山圖)
https://blog.csdn.net/u014801157/article/details/24372531 (ggplot2參數(shù))
Python學習
http://scu.zju.edu.cn/redir.php?catalog_id=58400&object_id=205537
http://scu.zju.edu.cn/redir.php?catalog_id=58400&object_id=206185
http://www.cnblogs.com/IvyWong/p/9784441.html (程序運行結(jié)束發(fā)送郵件)
python繪圖與可視化
https://www.cnblogs.com/zhizhan/p/5615947.html (matplotlib參數(shù)介紹)
https://www.cnblogs.com/darkknightzh/p/6117528.html (色譜)
http://blog.sciencenet.cn/blog-301516-408670.html (配色設(shè)計)
https://blog.csdn.net/qq_41841569/article/details/83824342(圈型餅圖)
隨機網(wǎng)絡(luò)
http://blog.sciencenet.cn/home.php?do=blog&id=337442&mod=space&uid=404069
WGCNA(加權(quán)基因共表達網(wǎng)絡(luò)分析)
http://www.biotrainee.com/thread-704-1-1.html(胡永飛教程)
http://tiramisutes.github.io/2016/09/14/WGCNA.html(畫熱圖報錯解決)
https://www.cnblogs.com/wkslearner/p/5731015.html(胡永飛教程:reshape2包dcast函數(shù))
http://blog.sina.com.cn/s/blog_5d5320cd0102w56k.html(詳細)
http://blog.sina.com.cn/s/blog_61f013b80101lcpr.html(逐步構(gòu)建)
http://scu.zju.edu.cn/redir.php?catalog_id=58400&object_id=209293
http://www.360doc.com/content/17/0111/15/19913717_621780330.shtml
https://max.book118.com/html/2017/0715/122326492.shtm (講義)
http://www.bio-info-trainee.com/2535.html
http://blog.sina.com.cn/s/blog_61f013b80101lcpr.html(詳細更新)
http://www.reibang.com/p/e2acfee2ba5f (關(guān)于hub標準的討論)
https://blog.csdn.net/weixin_43569478/article/details/83747196 (hub gene)
http://www.reibang.com/p/25905a905086 (hub gene 及后續(xù))
http://www.reibang.com/p/f0409a045dab(網(wǎng)站匯總)
http://www.reibang.com/p/b7626aef5efb(過程圖的解釋)
非常好的轉(zhuǎn)錄組技術(shù)入門*
http://blog.fungenomics.com/2016/07/why-fpkm-and-rpkm-are-wrong.html
基因共表達聚類分析及可視化(非常好,概述)
https://blog.csdn.net/qazplm12_3/article/details/78904744
http://www.reibang.com/p/f899312ee01d(聚類概述熙卡,R)
DESeq2
http://www.bioinfo-scrounger.com/archives/113
http://www.reibang.com/p/3bfb21d24b74 (簡書)
http://www.360doc.com/content/16/0804/08/26456292_580656574.shtml (rlg標準化)
http://www.360doc.com/content/16/0804/08/26456292_580656102.shtml(limma)
http://scu.zju.edu.cn/redir.php?catalog_id=58400&object_id=162638 (詳細)
http://scu.zju.edu.cn/redir.php?catalog_id=58400&object_id=202797(#DESeq2包做富集分析)
http://www.reibang.com/p/6d385b729b27(從原始數(shù)據(jù)到可視化窃蹋,非常好!)
富集分析
http://www.reibang.com/p/5a4bda169247(概述與比較)
KEGG數(shù)據(jù)下載與處理
http://www.oebiotech.com/Article/smkeggsjnj.html(輔助ReCiPa R包)
mirpath miRNA富集分析
差異表達概述(非常好要糊,講了閾值的含義)
http://www.reibang.com/p/b55276e46f0c
http://www.yunbios.net/Differential-Expression-Analysis.html(差異表達分析闻坚,支持edgeR、DESeq2逝她、limma)
http://www.freesion.com/article/752576024/(三種比較)
http://blog.sciencenet.cn/blog-3377724-1095665.html(count FPKM 用途)
https://blog.csdn.net/weixin_30657541/article/details/97068082(edgeR,過濾)
https://www.cnblogs.com/timeisbiggestboss/p/7190938.html(edgeR)
使用R處理GEO基因表達數(shù)據(jù)
http://www.reibang.com/p/6f9f40b516f0
基因表達數(shù)據(jù)處理:Raw2FPKM
https://blog.csdn.net/guomutian911/article/details/78154840
差異表達結(jié)果怎么看
http://www.360doc.com/content/16/1214/11/19913717_614583481.shtml
http://www.reibang.com/p/b55276e46f0c
count與FPKM
http://www.omicshare.com/forum/thread-762-1-1.html
https://blog.csdn.net/weixin_30512785/article/details/96585643(DEseq2 直接count均一化)
http://www.reibang.com/p/5f94ae79f298
http://www.360doc.com/content/19/1224/14/68068867_881789451.shtml (DEseq2標準化詳解)
https://www.bioinfo-scrounger.com/archives/111/ (DEaeq不是2)
http://www.reibang.com/p/f685149ea247 (contrast順序)
R根據(jù)列名提取
https://www.cnblogs.com/raisok/p/11089646.html
Web of Science 數(shù)據(jù)庫導出記錄中各個字段的含義
https://blog.csdn.net/qq_36215315/article/details/103097152
limma包做差異表達分析
https://www.plob.org/article/9966.html
https://blog.csdn.net/tuanzide5233/article/details/83541443
轉(zhuǎn)錄組的高級分析前該如何標準化數(shù)據(jù)浇坐?
http://www.360doc.com/content/17/1208/14/49848843_711247413.shtml
ID轉(zhuǎn)換文件介紹
http://chuansong.me/n/1551007052174
http://www.360doc.com/content/16/0804/08/26456292_580657420.shtml (各種R包)
數(shù)據(jù)庫R包org.Hs.eg.db(和merge結(jié)果會有差異)
http://www.360doc.com/content/16/0804/08/26456292_580659335.shtml
https://www.cnblogs.com/yatouhetademao/p/6817824.html (select函數(shù))
使用annotate包注釋芯片
http://www.reibang.com/p/0695a6a3c51f
https://www.cnblogs.com/raisok/p/10836339.html(*****)
https://shengxin.ren/article/97(網(wǎng)站匯總*****)
ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/GENE_INFO/Mammalia/Homo_sapiens.gene_info.gz
JAVA創(chuàng)建
http://www.oracle.com/technetwork/java/javase/downloads/index.html
JDK:JAVA_HOME(注意路徑)
JRE: Path
linux特殊符號
http://scu.zju.edu.cn/redir.php?catalog_id=58400&object_id=209336
STRING的應(yīng)用
http://www.bio-info-trainee.com/1589.html
Htseq(python)count提取
http://www.reibang.com/p/6932c72aba63
RNA-seq回貼與組裝
https://www.cnblogs.com/leezx/p/5704047.html
NCBI注釋下載
ftp://ftp.ncbi.nlm.nih.gov/gene/DATA
Genecode注釋下載
https://www.gencodegenes.org/releases/current.html
Gene type的分類說明
http://www.pinlue.com/article/2018/09/1520/497200298153.html
igraph畫圖(學不會,放棄)
http://www.bio-info-trainee.com/2082.html
https://www.cnblogs.com/zidiancao/p/3937120.html
Cytoscape
http://www.bio-info-trainee.com/2053.html(掃盲)
http://manual.cytoscape.org/en/stable/Styles.html(官方使用手冊黔宛,炫酷)
https://shengxin.ren/article/161(美化)
http://www.reibang.com/p/5a790c223dee (數(shù)據(jù)導入設(shè)置※)
http://blog.sina.com.cn/s/bolg_7ed9e1310102wspp.html(布局與修改顏色)
http://blog.sina.com.cn/s/bolg_5d188bc40102vdtd.html(控制節(jié)點顏色)
https://shengxin.ren/article/376(篩選hub gene)
https://blog.csdn.net/woodcorpse/article/details/82739825(帶餅圖或條圖的網(wǎng)絡(luò),應(yīng)用bypass和slect,以及AI或PS)
https://www.sohu.com/a/200098300_652735(根據(jù)中心性選擇hub gene)
http://www.doc88.com/p-6793970636907.html(拓撲結(jié)構(gòu)介紹)
http://www.jintiankansha.me/t/kRWuOwYpu8(大全)
http://blog.sina.com.cn/s/blog_18600b4880102ydkc.html(layout)
RGB配色表
http://www.wahart.com.hk/rgb.htm
sci文章用圖修改與排版規(guī)則
https://blog.csdn.net/qazplm12_3/articale/details/7848642
https://www.sohu.com/a/228711352_307557 (期刊要求)
R包讀取excel數(shù)據(jù)
https://blog.csdn.net/esa_dsq/article/details/65003304
R包查詢
http://www.omicsclass.com/article/517
置換檢驗(permutation test:當樣本量足夠多時近刘,樣本發(fā)生的頻率近似于概率。)
https://blog.csdn.net/wukong1981/article/details/72820049?readlog(概論)
http://blog.sina.com.cn/s/blog_5cd2f1e2010192kj.html(perm包)
http://www.reibang.com/p/ce84cd89f67d(Deducer包)
遺傳學補課
http://blog.sina.com.cn/s/blog_59024b7d0102w4sm.html (rare mutation/common mutation)
預測基因間相互作用
http://www.sohu.com/a/137672913_177233
RIP實驗技術(shù)
https://wenku.baidu.com/view/a42bc037f705cc17542709c7.html
WGS
http://www.360doc.com/content/18/0430/17/53115266_750031817.shtml
http://www.360doc.com/content/18/0208/11/19913717_728563847.shtml
https://www.biomart.cn/news/10/2855654.htm(tools)
http://blog.sina.com.cn/s/blog_165162de60102xmdz.html(tools)
https://zhuanlan.zhihu.com/p/54077965 (知乎)
https://www.plob.org/article/11652.html(歷史簡介)
lncRNA
https://www.sohu.com/a/224346923_653813(A基因通過B基因/信號通路在C疾病中發(fā)揮D功能)
lncRNA引物設(shè)計
http://www.360doc.com/content/17/0825/22/33204118_682144708.shtml(引物設(shè)計)
lncRNA數(shù)據(jù)庫
http://www.bio-info-trainee.com/2927.html
lncRNA差異表達原因
http://www.360doc.com/content/18/0325/17/53579289_740098364.shtml
lncRNA2017盤點
http://www.360doc.com/content/17/1214/19/45962007_713114566.shtml
機器學習掃盲
http://www.360doc.com/content/17/0604/01/40628179_659684706.shtml(概述)
https://blog.csdn.net/kiss__soul/article/details/81625275(分類臀晃、回歸觉渴、聚類、降維的區(qū)別)
https://www.csdn.net/gather_20/MtTacg5sOTg3Ni1ibG9n.html
http://www.reibang.com/p/58b276f7e7fd(3Dtsne繪圖)
python機器學習庫sklearn——交叉驗證(K折徽惋、留一案淋、留p、隨機)
https://blog.csdn.net/luanpeng825485697/article/details/79836262
https://blog.csdn.net/light_blue_love/article/details/41794215 (留一)
lasso回歸和嶺回歸
https://blog.csdn.net/JH_Zhai/article/details/82694937
判別分析的R實現(xiàn)
https://wenku.baidu.com/view/689633f924c52cc58bd63186bceb19e8b9f6ec2d.html(原理)
http://www.doc88.com/p-1137288773501.html
https://www.cnblogs.com/Ricepig/p/LDA.html (安裝說明)
https://wenku.baidu.com/view/51f4fc1430126edb6f1aff00bed5b9f3f80f7273.html
逐步判別分析方法與判據(jù)的選擇
https://max.book118.com/html/2017/0717/122615190.shtm
https://wenku.baidu.com/view/ba3c738c680203d8ce2f24e4.html
線性判別分析的原理簡介&Python與R實現(xiàn)
https://cloud.tencent.com/developer/article/1099252
線性判別分析LDA原理總結(jié)
https://www.cnblogs.com/pinard/p/6244265.html
用scikit-learn進行LDA降維
https://www.cnblogs.com/vivianzy1985/p/9208505.html
LDA降維與分類
https://blog.csdn.net/jie310600/article/details/84926693
LDA降維與PCA的區(qū)別
https://blog.csdn.net/ainimao6666/article/details/64933677
R語言邏輯回歸险绘、ROC曲線和十折交叉驗證
https://blog.csdn.net/Tiaaaaa/article/details/58116346
R語言多重共線性判別
http://www.mamicode.com/info-detail-1557739.html
支持向量機掃盲
https://blog.csdn.net/b285795298/article/details/81977271
https://www.zhihu.com/question/26768865?sort=created
http://blog.sina.com.cn/s/blog_6ab063770102vwup.html(核函數(shù)的選擇)
https://wenku.baidu.com/view/9378da89be1e650e53ea9941.html
https://www.cnblogs.com/volcao/p/9465214.html
https://blog.csdn.net/dengheCSDN/article/details/78109253?locationNum=2&fps=1
http://www.reibang.com/p/0a24eafda4ff(SVM 的核函數(shù)選擇和調(diào)參)
http://www.sohu.com/a/303234946_777125(lass)
https://www.cnblogs.com/xiaojikuaipao/p/7126076.html(lasso)
https://blog.csdn.net/qll125596718/article/details/6910921(松弛變量)
https://blog.csdn.net/xgl112112/article/details/60321413(正則化)
http://www.reibang.com/p/4bad38fe07e6(L2范數(shù))
https://www.cnblogs.com/zhizhan/p/4629432.html(VC維與結(jié)構(gòu)風險)
主成分分析(PCA)原理總結(jié)
https://www.cnblogs.com/pinard/p/6239403.html
K均值聚類
https://blog.csdn.net/alicelmx/article/details/80991870(選擇K)
http://www.reibang.com/p/743cf2357b28(LG RF SVM)
分類器的選擇
http://i.dataguru.cn/mportal.php?aid=11360&mod=view(有監(jiān)督學習選擇深度學習還是隨機森林或支持向量機?)
隨機森林
https://blog.csdn.net/yawei_liu1688/article/details/78891050(R實現(xiàn))
http://www.360doc.com/content/17/0829/00/33459258_682897658.shtml
https://www.cnblogs.com/iupoint/p/10175090.html(進度條踢京,k折交叉驗證)
http://blog.sciencenet.cn/home.php?mod=space&uid=3406804&do=blog&id=1158196(帶可視化和交叉驗證)
https://blog.csdn.net/HHTNAN/article/details/54580747(R實現(xiàn))
https://blog.csdn.net/weixin_43216017/article/details/87887334(簡易版)
https://blog.csdn.net/t15600624671/article/details/76515033(超詳細講解代碼)
https://blog.csdn.net/qq_35040963/article/details/88832030(網(wǎng)格搜索法調(diào)參)
R包介紹(機器學習等多種)
https://blog.csdn.net/mjk/article/details/6229697
網(wǎng)格搜索和調(diào)參
https://blog.csdn.net/cymy001/article/details/78578665
https://www.cnblogs.com/aibbtcom/p/8548486.html(各種驗證方式)
https://blog.csdn.net/weixin_40604987/article/details/79691752
https://www.cnblogs.com/aibbtcom/p/8548484.html
https://blog.csdn.net/winycg/article/details/80358567
https://blog.csdn.net/qysh123/article/details/80063447(自動化調(diào)參詳解)
https://blog.csdn.net/cherdw/article/details/54970366(*****)
https://blog.csdn.net/baidu_15113429/article/details/72673466(*****)
https://blog.csdn.net/reallyr/article/details/87016298
https://baike.baidu.com/item/F1%E5%88%86%E6%95%B0/13864979?fr=aladdin(F1 score)
http://blog.sina.com.cn/s/blog_6a41348f0101ep7w.html(C和G的選擇,很好)
ROC曲線以及評估指標F1-Score, recall, precision
https://blog.csdn.net/csqazwsxedc/article/details/51509808
https://blog.csdn.net/Quincuntial/article/details/69596456
https://blog.csdn.net/quiet_girl/article/details/70830796
https://blog.csdn.net/reallyr/article/details/87016298
Python機器學習庫sklearn.model_selection模塊的幾個方法參數(shù)(非常好)
https://blog.csdn.net/cymy001/article/details/79078470
https://scikit-learn.org/stable/modules/svm.html
python機器學習庫sklearn
http://www.dengb.com/rgznjc/1312678.html
Scikit-learn實例之理解SVM正則化系數(shù)C
https://blog.csdn.net/mingtian715/article/details/54574700
特征選擇:遞歸特征消除與LassoCV
https://www.cnblogs.com/gczr/p/6802948.html(python)
http://www.reibang.com/p/8d42df933070
https://www.zybuluo.com/Macux/note/181285(R lasso*****)
外泌體總結(jié)
http://www.sohu.com/a/168249466_390793
高通量測序質(zhì)量解讀
http://www.360doc.com/content/19/0424/16/15294469_831161186.shtml(特征縮放術(shù)語混淆)
https://wenku.baidu.com/view/a5f2c8157f21af45b307e87101f69e314232fa62.html
http://www.360doc.com/content/16/0909/20/19913717_589635518.shtml(基因組轉(zhuǎn)錄組區(qū)別)
http://www.biotrainee.com/thread-2789-1-1.html(生物學重復和技術(shù)重復)
http://www.reibang.com/p/0f5a9616efe2(Read count CPM RPKM)
http://www.360doc.com/content/18/1218/18/47588191_802708524.shtml(RNA-seq常用圖和read count)RNA豐度:一種特定的mRNA在某個細胞中的平均分子
RNA-seq項目設(shè)計:生物學重復和單個樣本測序量對結(jié)果的影響
http://www.reibang.com/p/5a21b218b366
RNA-seq層次聚類
https://www.bbsmax.com/A/WpdKV7k15V/(python)
http://www.reibang.com/p/adea91ac59d8(R)
聚類熱圖包
https://www.sohu.com/a/210713199_688647(十種方法)
https://blog.csdn.net/lalaxumelala/article/details/86022722
http://blog.sina.com.cn/s/blog_4a0824490102v7aa.html(自定義顏色)
隨機森林和套索算法的特征篩選
http://m.sohu.com/a/303234946_777125(LASSO宦棺,R)
https://blog.csdn.net/lightsupw/article/details/80916384(RF瓣距,python)
https://www.sohu.com/a/122101031_572440(RF,R)
http://www.doc88.com/p-0923201614591.html(各自優(yōu)劣)
特征選擇
http://www.reibang.com/p/009a86ad55a0
https://blog.csdn.net/u013524655/article/details/41078911(兩種R包比較)
https://www.sohu.com/a/325884447_466874 (翻譯)
http://wap.sciencenet.cn/blog-3406804-1158196.html(完整隨機森林R實現(xiàn)*****)
set.seed()函數(shù)的意義以及用法
https://blog.csdn.net/vencent_cy/article/details/50350020
R + python︱數(shù)據(jù)規(guī)范化代咸、歸一化蹈丸、Z-Score
https://blog.csdn.net/Castlehe/article/details/88988267
https://blog.csdn.net/sinat_33761963/article/details/53433799(代碼)
https://blog.csdn.net/sinat_26917383/article/details/51228217
https://blog.csdn.net/chixujohnny/article/details/54231815(scale normal 為做圖好看)
什么時候用歸一化?什么時候用標準化呐芥?http://www.reibang.com/p/95a8f035c86c
(1)如果對輸出結(jié)果范圍有要求逻杖,用歸一化。
(2)如果數(shù)據(jù)較為穩(wěn)定思瘟,不存在極端的最大最小值荸百,用歸一化。
(3)如果數(shù)據(jù)存在異常值和較多噪音潮太,用標準化管搪,可以間接通過中心化避免異常值和極端值的影響。
個人經(jīng)驗:建議優(yōu)先使用標準铡买。對于輸出有要求時再嘗試別的方法更鲁,如歸一化或者更加復雜的方法。
https://blog.csdn.net/qq_40304090/article/details/90597892(一步和逐步標準化區(qū)別)
不同版本的R
https://cran.r-project.org/bin/windows/base/old/
R字符串處理
https://www.bbsmax.com/A/D854jnnQzE/
http://blog.sina.com.cn/s/blog_7147f6870102whcl.html
缺失值處理(R)
https://blog.csdn.net/sadfasdgaaaasdfa/article/details/44595309
https://blog.csdn.net/qq_29462849/article/details/80647999(數(shù)據(jù)缺失類型)
https://blog.csdn.net/carlwu/article/details/75645092(缺失數(shù)據(jù)可視化)
http://blog.sina.com.cn/s/blog_99dc1f0a0102w790.html(VIM mice包)
https://www.cnblogs.com/feffery/p/10914486.html(marginplot)
http://www.reibang.com/p/442697e91516(多重插補)
http://www.sohu.com/a/235232488_274950
數(shù)據(jù)切分
https://blog.csdn.net/qq_16365849/article/details/52734139
https://blog.csdn.net/chandelierds/article/details/83245221(數(shù)據(jù)劃分與cross validation)
https://www.cnblogs.com/Hyacinth-Yuan/p/8289385.html(caret包參數(shù)說明)
交叉驗證的一些方法
https://www.cnblogs.com/D2016/p/6921005.html
凸包算法
https://stats.stackexchange.com/questions/11919/convex-hull-in-r(R實現(xiàn))
http://www.doc88.com/p-7394513613827.html
http://www.twinklingstar.cn/category/computational-geometry/8-%E5%87%B8%E5%8C%85/(綜述)
GSEA富集分析(路徑從頭到尾不能有中文)
https://blog.csdn.net/qazplm12_3/article/details/83474140(詳細步驟)
https://www.omicsclass.com/article/186(格式說明)
https://www.cnblogs.com/jessepeng/p/9555804.html(結(jié)果:NES絕對值≧ 1.0奇钞,NOM p-val ≦ 0.05澡为,F(xiàn)DR q-val ≦ 0.25是有意義的基因集合)
https://baijiahao.baidu.com/s?id=1647547246944679438&wfr=spider&for=pc
https://blog.csdn.net/weixin_43569478/article/details/83745105(輸入表達矩陣分組,基因fc排列)
http://www.360doc.com/content/19/1124/09/33037066_875109328.shtml
外泌體提取
https://www.exosomemed.com/893.html
邏輯回歸
https://www.cnblogs.com/nxld/p/6170690.html
https://www.cnblogs.com/Hyacinth-Yuan/p/7905855.html(R)
KNN算法
http://www.reibang.com/p/c37d9b0b6052(非常好:3種R包)
https://blog.csdn.net/Chenyukuai6625/article/details/73612440
https://blog.csdn.net/bigdata_wang/article/details/44139125
https://blog.csdn.net/zrh_CSDN/article/details/80878842(KNN的選擇)
R語言正則化
https://blog.csdn.net/u011801891/article/details/55274809(l1范數(shù)(lasso)景埃、l2范數(shù)(嶺回歸))
https://blog.csdn.net/wangqi1113/article/details/80204956
https://blog.csdn.net/wildwind0907/article/details/86735474
http://blog.sina.com.cn/s/blog_e799ef7e0101fujn.html(cv.glmnet()glmnet())
降維概述
https://yq.aliyun.com/articles/70733(t-sne)
https://blog.csdn.net/Flyingzhan/article/details/79521765
特征篩選(隨機森林媒至,袋外誤差OOB)
https://blog.csdn.net/wishchin/article/details/52515516
R apply、lapply谷徙、sapply拒啰、mapply、tapply函數(shù)詳解
https://blog.csdn.net/u014543416/article/details/79037389
apply系列函數(shù)學習
http://scu.zju.edu.cn/redir.php?catalog_id=58400&object_id=180064
數(shù)據(jù)分析tapply
http://scu.zju.edu.cn/redir.php?catalog_id=58400&object_id=162298
數(shù)據(jù)分析:交并集完慧,重復處理
http://scu.zju.edu.cn/redir.php?catalog_id=58400&object_id=162023
3D轉(zhuǎn)換圖包
https://cloud.tencent.com/developer/article/1468704
屏蔽360
https://jingyan.baidu.com/article/95c9d20da98845ec4f756162.html
circRNA
http://www.sohu.com/a/68776974_390793
http://www.sohu.com/a/245920746_769248
http://www.360doc.com/content/18/0909/19/19913717_785211749.shtml(芯片)
可變剪接
http://www.reibang.com/p/759a5a714aa3
轉(zhuǎn)錄組掃盲
http://www.reibang.com/p/f6ed62416686
http://www.reibang.com/p/1505fa220ce4(數(shù)據(jù)處理)
http://www.bio-info-trainee.com/244.html(count)
https://blog.csdn.net/u012110870/article/details/102804307(raw count標準化原則*****)
轉(zhuǎn)錄組思路
https://m.baidu.com/sf?pd=realtime_article&openapi=1&dispName=iphone&from_sf=1&resource_id=4584&word=%E8%BD%AC%E5%BD%95%E7%BB%84%E6%B5%8B%E5%BA%8F+mRNA+miRNA&keysign=http%3A%2F%2Fwww.sohu.com%2Fa%2F192990065_99971433&source=www_normal_a&fks=1b2fbd&top=%7B%22sfhs%22%3A1%7D&title=%E8%BD%AC%E5%BD%95%E7%BB%84%E6%B5%8B%E5%BA%8F%20mRNA%20miRNA&lid=10718925662695254130&referlid=10718925662695254130&ms=1&frsrcid=1599&frorder=1
http://www.sohu.com/a/192990065_99971433
處理GEO
http://www.reibang.com/p/6f9f40b516f0
http://www.reibang.com/p/9a64dced5b2a
外泌體與神經(jīng)系統(tǒng)疾病
http://www.sohu.com/a/150973486_464200
https://www.exosomemed.com/3791.html(被根神經(jīng)節(jié)-慢性疼痛)
excel快速計算年齡
=DATEDIF(K58,L58,"y")&"歲"&DATEDIF(K58,L58,"ym")&"月"&DATEDIF(K58,L58,"md")&"天"
差異表達(芯片和RNAseq處理差異)
http://www.reibang.com/p/b55276e46f0c
http://www.reibang.com/p/de98164c3141(從sra)
http://www.reibang.com/p/41a6c6508adf(不錯的解讀)
http://www.dxy.cn/bbs/topic/34064676?sf=2&dn=4(EBseq)
https://www.wandouip.com/t5i20362/(報錯)
https://blog.csdn.net/enyayang/article/details/98176566
RSEM和RPKM兩種數(shù)據(jù)處理方法有區(qū)別谋旦,但我一般直接用TCGA給的RSEM;對數(shù)據(jù)取log2(*+1)屈尼,數(shù)據(jù)分布就非常類似基因芯片了册着。
許多其他研究也采用這中方法。要得到基因上下調(diào)脾歧,就要進行差異表達分析甲捏,那就是另外一回事了。
一抗二抗的選擇
https://wenku.baidu.com/view/cd141ef4f61fb7360b4c65d1.html
WB步驟
https://wenku.baidu.com/view/133c8d66f011f18583d049649b6648d7c1c70887.html(BCA)
https://wenku.baidu.com/view/61be9b195e0e7cd184254b35eefdc8d376ee14ef.html
https://www.sohu.com/a/278602111_177233
調(diào)整年齡和性別
http://www.reibang.com/p/2634d0cbd0ca
正態(tài)分布檢驗
https://www.it610.com/article/2580278.htm
perl表達矩陣處理
http://www.reibang.com/p/17a1d9c256c2
UCSCXenaTools包用法介紹——搜索與下載TCGA鞭执、GDC司顿、ICGC等公開數(shù)據(jù)庫數(shù)據(jù)集
https://shengxin.ren/article/397
lncRNA預測
https://www.douban.com/note/666292911/
https://cloud.tencent.com/developer/news/386861
https://www.docin.com/p-526245550.html(分析方法綜述,中文兄纺,講了標準化方法)
http://www.360doc.com/content/17/0109/22/39751229_621403934.shtml(編碼能力預測)
http://www.360doc.com/content/16/0808/10/19913717_581620155.shtml
http://www.360doc.com/content/16/1111/12/19913717_605626019.shtml
microRNA作用方式是通過結(jié)合mRNA來抑制翻譯或者促進降解實現(xiàn)的免猾,發(fā)生在轉(zhuǎn)錄后水平;
但是lncRNA就太復雜了囤热,因此有關(guān)于lncRNA作用模式的多種說法猎提,比如順式(cis)和反式(trans)之分,
比如Signal旁蔼,Decoy锨苏,Duide,Scaffold棺聊,
也可以根據(jù)lncRNA與不同的分子分為DNA伞租、RNA和蛋白,總體上包括了轉(zhuǎn)錄和轉(zhuǎn)錄后水平限佩。
P值校正簡介(FDR)
http://www.reibang.com/p/7436db3b62b4
ceRNA網(wǎng)絡(luò)構(gòu)建
http://www.360doc.com/content/18/1226/13/52645714_804579327.shtml
http://www.reibang.com/p/3f440177db46
http://www.hzrna.com/4509.html
miR下游預測
http://www.bio-info-trainee.com/1719.html(提到一個新R包)
無參轉(zhuǎn)錄組RNAseq分析/WES(七)看de novo變異情況
http://www.bio-info-trainee.com/tag/de-novo
轉(zhuǎn)錄調(diào)控
http://www.sohu.com/a/221919998_652735
罕見變異常見變異
https://www.docin.com/p-869320712.html
混合效應(yīng)模型lme
http://www.sohu.com/a/292709912_274950
https://zhuanlan.zhihu.com/p/49480686
http://www.doc88.com/p-5877404057484.html(RNAseq)
https://zhuanlan.zhihu.com/p/32006859
http://www.matools.com/blog/190430887
https://www.sohu.com/a/115465771_466874(***)
線性模型(Logistics回歸)
https://zhuanlan.zhihu.com/p/21710196(嵌套模型選擇)
R語言try錯誤識別
https://blog.csdn.net/YJJ18636810884/article/details/83176190
http://www.reibang.com/p/759d31b371bf
根據(jù)表達量篩選探針后葵诈,對主成分分析的PCA圖有什么影響
http://www.reibang.com/p/dd4e842b6707(***)
http://www.reibang.com/p/f4b618354dc2
推薦在統(tǒng)計檢驗前過濾表達量低裸弦,也就如果一個基因在所有樣本中count均低于某一閥值,請在分析前剔除作喘。這個閥值也是約定俗成理疙,一般設(shè)置為3.
卡方檢驗
http://www.reibang.com/p/bb0bd72bc428
https://www.cnblogs.com/yuanzhoulvpi/p/8387019.html(列聯(lián)表)
高效R包
http://blog.sciencenet.cn/home.php?mod=space&uid=1271266&do=blog&id=968772
http://www.reibang.com/p/bb435002251d
TCGA數(shù)據(jù)下載預處理
http://www.reibang.com/p/00f6ed2d5cff(R)
https://blog.csdn.net/weixin_42512684/article/details/89415482(在線)
https://blog.csdn.net/herokoking/article/details/78980085
https://blog.csdn.net/qq_35203425/article/details/80882988(gdc安裝)
http://3g.dxy.cn/bbs/topic/42048765?sf=2&dn=4
https://www.bioinfo-scrounger.com/archives/317/(總結(jié))
https://shengxin.ren/article/27(簡易版)
http://www.reibang.com/p/73363a33c3bc(下載后數(shù)據(jù)整理)
環(huán)境變量配置是在系統(tǒng)變量里和網(wǎng)上不一致,cmd->gdc-client -h -m
m6A甲基化
https://blog.csdn.net/AIPuFu/article/details/100821644(工具)
https://www.sohu.com/a/251171553_464200(基礎(chǔ)知識)
http://www.reibang.com/p/3bd1feb0a4ff(掃盲泞坦,特別好*****)
ChAMP 包分析甲基化數(shù)據(jù)
http://www.reibang.com/p/7993b890e4f3(R包)
b站的機器學習教程
機器學習(Machine Learning)- 吳恩達(Andrew Ng)
https://www.bilibili.com/video/av9912938/?p=1
李宏毅機器學習(2017)
https://www.bilibili.com/video/av10590361?from=search&seid=6875117190981152608
Python教程_600集Python從入門到精通教程 (前100Linux基礎(chǔ))
https://www.bilibili.com/video/av14184325/?p=1
交互式圖表
http://www.reibang.com/p/67c6b0132892(Bokeh 可視化)
https://blog.csdn.net/tankloverainbow/article/details/80442289
https://blog.csdn.net/weixin_44208569/article/details/98068947(python繪圖庫總結(jié)窖贤,*****推薦)
Github介紹
https://www.yangzhiping.com/tech/github.html
python數(shù)據(jù)替換
https://www.runoob.com/python/att-string-replace.html
python統(tǒng)計入門
TPM標準化
https://blog.csdn.net/herokoking/article/details/78790938(公式)
https://www.bioinfo-scrounger.com/archives/342/(FPKM)
批次效應(yīng)
https://www.dxy.cn/bbs/newweb/pc/post/37426943?from=recommend
https://www.plob.org/article/14410.html
https://cloud.tencent.com/developer/article/1518682
https://shengxin.ren/question/10(******)
AUC
http://www.dataguru.cn/article-12379-1.html
https://blog.csdn.net/qq_29423387/article/details/87911526(比較)
http://www.reibang.com/p/8d3716bf2e9b(*****)
https://blog.csdn.net/sunflower_sara/article/details/81214897 (各指標計算)
http://www.sohu.com/a/277402356_324765(靈敏度特異度在線)
http://www.reibang.com/p/c4f740b0939b(proc*****)
https://www.mediecogroup.com/method_topic_article_detail/297/?ty=methods(截斷值解釋)
miR網(wǎng)站下游分析
http://www.360doc.com/content/18/0220/22/47873863_731092035.shtml
RNA-seq上游流程sra→fasq→bam→count
http://www.reibang.com/p/9639bfa86543
http://www.reibang.com/p/c78b8719e81b(sra→fasq→bam→count 需要linux和R)
https://www.bilibili.com/video/av28453557(視頻教程)
https://zhuanlan.zhihu.com/p/77876265
大腦翻譯匯編
https://wenku.baidu.com/view/ca6c7974b52acfc788ebc925.html
https://wenku.baidu.com/view/1772ad7f02d276a201292e45.html(詳細功能分區(qū))
一般英文文獻對Kernel有兩種提法,一是Kernel Function贰锁,二是Kernel Trick赃梧。
svm四類核函數(shù):9 種核函數(shù)以及它們的用處和公式,常用的為其中的前四個:linear豌熄,Polynomial授嘀,RBF,Sigmoid
https://www.imooc.com/article/49276
hg19和hg38
https://cloud.tencent.com/developer/article/1424598(轉(zhuǎn)錄組基因組)
mirdeep2使用
http://www.reibang.com/p/2f8d39760e5e (mapper.pl锣险、miRDeep2.pl)
http://www.reibang.com/p/ebf162ae5690 (quantifier.pl)
參考基因組注釋及比對
http://www.reibang.com/p/75404f813e0a
https://www.cnblogs.com/jessepeng/p/9681749.html
https://blog.csdn.net/L_yivs/article/details/80799366?utm_source=blogxgwz5(基因組和注釋文件下載)
http://www.reibang.com/p/348eca15fb03(排序粤攒、index文件)
http://www.reibang.com/p/48b5a0972301 (GFF和GTF,數(shù)據(jù)結(jié)構(gòu))
sra到fastq格式轉(zhuǎn)換并進行質(zhì)量控制
http://www.reibang.com/p/bc03e81f29aa(*****python linux?)
參考轉(zhuǎn)錄組RNAseq分析Kallisto
http://www.reibang.com/p/4601374fbb9f
R語言utf8各種問題解決
https://blog.csdn.net/snowdroptulip/article/details/78806793
KNN和SVM的區(qū)別
https://blog.csdn.net/nineship/article/details/88200905
https://blog.csdn.net/weixin_42864175/article/details/88755913 (SVM囱持,決策樹夯接,隨機森林知識點整理)
https://blog.csdn.net/qq_34106574/article/details/82016442
https://blog.csdn.net/wargames_dc/article/details/89235746
靈敏度 特異度 比較)
https://www.sohu.com/a/213439666_489312
R語言機器學習之核心包kernlab
https://www.ikddm.com/3125.html/
模擬多分類的支持向量分類
https://blog.csdn.net/buracag_mc/article/details/76408155
隨機森林優(yōu)劣的詳細解釋
https://blog.csdn.net/keepreder/article/details/47273297 (*****)
https://blog.csdn.net/qq_38984677/article/details/88627572
knn超參數(shù)選擇,python
https://www.cnblogs.com/xufangming/articles/9046171.html
https://www.cnblogs.com/baochuan/p/9756791.html(講解優(yōu)缺點比較特別好纷妆,對k值的理解)
ggpubr 畫圖(頂級CNS)
http://blog.sciencenet.cn/blog-3334560-1091714.html(python)
https://blog.csdn.net/qq_25055921/article/details/99705180(R)