單細(xì)胞Seurat V5分析流程

自從seurat V5更新之后呢,很多小伙伴观堂,初學(xué)者居多吧让网,都有點(diǎn)不適應(yīng),再加上網(wǎng)上有些人的“煽風(fēng)點(diǎn)火”师痕,導(dǎo)致大家望而卻步溃睹,好像這次更新非常可怕一樣胰坟。其實(shí)不然因篇,seurat的更新在我看來(lái)并沒(méi)有多大的變化,不必望而生畏笔横。此外竞滓,他的更新也是非常好的,首先第一點(diǎn)如他官網(wǎng)上所述吹缔,數(shù)據(jù)結(jié)構(gòu)發(fā)生了很大的改變商佑,這樣在運(yùn)行的時(shí)候不會(huì)耗費(fèi)太多的內(nèi)容。其次我認(rèn)為最好的地方就是數(shù)據(jù)整合這里厢塘,將目前比較優(yōu)秀的方法通過(guò)一句代碼實(shí)現(xiàn)茶没,非常方便肌幽。這次我們演示一下它的基本分析,其實(shí)很簡(jiǎn)單礁叔,也不會(huì)有太大的問(wèn)題牍颈。

首先我們下載安裝相關(guān)的軟件,讀入數(shù)據(jù)琅关,數(shù)據(jù)讀取沒(méi)有什么變化煮岁!

#install packages
install.packages('Seurat')
library(Seurat)
#安裝一些額外的包
setRepositories(ind = 1:3, addURLs = c('https://satijalab.r-universe.dev', 'https://bnprks.r-universe.dev/'))
install.packages(c("BPCells", "presto", "glmGamPoi"))
remotes::install_github("satijalab/seurat-data", quiet = TRUE)
remotes::install_github("satijalab/azimuth", quiet = TRUE)
remotes::install_github("satijalab/seurat-wrappers", quiet = TRUE)
# If users encounter any errors related to the Matrix package, please resolve by re-installing the TFBSTools package using the command below and opening a fresh R session:
BiocManager::install("TFBSTools", type = "source", force = TRUE)

setwd("/home/ks_ts/data_analysis/seuratV5_test/scRNA_analysis/")

#read data and creat seurat obj
WT <- Read10X("./scRNA_data/WT_E18/")
WT <- WT$`Gene Expression`
WT <- CreateSeuratObject(counts = WT, project = "WT", min.cells = 3, min.features = 200)

GO <- Read10X("./scRNA_data/GO_E18/")
GO <- GO$`Gene Expression`
GO <- CreateSeuratObject(counts = GO, project = "GO", min.cells = 3, min.features = 200)

數(shù)據(jù)質(zhì)控什么的和V4一樣:


#線粒體比例
WT[["percent.mt"]] <- PercentageFeatureSet(WT, pattern = "^mt-")
GO[["percent.mt"]] <- PercentageFeatureSet(GO, pattern = "^mt-")
#血紅蛋白基因
WT[["percent.hb"]] <- PercentageFeatureSet(WT, pattern = "^Hb[^(p)]")
GO[["percent.hb"]] <- PercentageFeatureSet(GO, pattern = "^Hb[^(p)]")

#核糖體基因
WT[["percent.rb"]] <- PercentageFeatureSet(WT, pattern = "^Rbs|Rpl")
GO[["percent.rb"]] <- PercentageFeatureSet(GO, pattern = "^Rbs|Rpl")

p1= VlnPlot(WT, features = c("nFeature_RNA", "nCount_RNA", "percent.mt","percent.hb","percent.rb"),pt.size = 0.1, ncol = 5)

p2 = VlnPlot(GO, features = c("nFeature_RNA", "nCount_RNA", "percent.mt","percent.hb","percent.rb"),pt.size = 0.1, ncol = 5)
p1/p2

#QC質(zhì)控
WT <- subset(WT, subset = nFeature_RNA > 200 & nFeature_RNA < 6000 & nCount_RNA < 30000 &  percent.mt < 5)
GO <- subset(GO, subset = nFeature_RNA > 200 & nFeature_RNA < 6000 & nCount_RNA < 30000 &  percent.mt < 5)

p3= VlnPlot(WT, features = c("nFeature_RNA", "nCount_RNA", "percent.mt","percent.hb","percent.rb"),pt.size = 0.1, ncol = 5)
p4 = VlnPlot(GO, features = c("nFeature_RNA", "nCount_RNA", "percent.mt","percent.hb","percent.rb"),pt.size = 0.1, ncol = 5)
p3/p4

接下來(lái)就是數(shù)據(jù)整合了,也是他更新的地方涣易。提供了很多方法画机,例如CCA、Harmony新症、scVI步氏、RPCA等等,選擇適合自己的即可徒爹!


#merge data
sce <- merge(WT, y=GO,add.cell.ids = c("WT", "GO"))


#NormalizeData & ScaleData
sce <- NormalizeData(sce)
sce <- FindVariableFeatures(sce)
sce <- ScaleData(sce, vars.to.regress = c("percent.mt"))
sce <- RunPCA(sce, verbose=F)

# methods of Integration
# CCA integration (method=CCAIntegration)
# RPCA integration (method=RPCAIntegration)
# Harmony (method=HarmonyIntegration)
# JointPCA (method= JointPCAIntegration)

# FastMNN (method= FastMNNIntegration)
# scVI (method=scVIIntegration)

###Integrated with CCA
sce_cca <- IntegrateLayers(object = sce, 
                           method = CCAIntegration, 
                           orig.reduction = "pca", 
                           new.reduction = "integrated.cca",verbose = FALSE)

# re-join layers after integration
sce_cca[["RNA"]] <- JoinLayers(sce_cca[["RNA"]])


sce_scvi <- IntegrateLayers(object = sce, 
                            method = scVIIntegration, 
                            orig.reduction = "pca", 
                            new.reduction = "integrated.scvi",
                            conda_env="/home/ks_ts/miniconda3/envs/scvi-env",
                            verbose = FALSE)

# re-join layers after integration
sce_scvi[["RNA"]] <- JoinLayers(sce_scvi[["RNA"]])

#================================================================================
#Perform cca reduction
Seurat::ElbowPlot(sce_cca, ndims = 50)
sce_cca <- FindNeighbors(sce_cca, reduction = "integrated.cca", dims = 1:20)
sce_cca <- FindClusters(sce_cca, resolution = seq(from = 0.1, to = 1.0, by = 0.1))
sce_cca <- RunUMAP(sce_cca, dims = 1:20, reduction = "integrated.cca")
# clustree(sce_cca)

#Perform scVI reduction
Seurat::ElbowPlot(sce_scvi, ndims = 50)
sce_scvi <- FindNeighbors(sce_scvi, reduction = "integrated.scvi", dims = 1:20)
sce_scvi <- FindClusters(sce_scvi, resolution = seq(from = 0.1, to = 1.0, by = 0.1))
sce_scvi <- RunUMAP(sce_scvi, dims = 1:20, reduction = "integrated.scvi")
# clustree(sce_scvi)


#cluster plot
DimPlot(sce_cca, reduction = "umap", group.by = "orig.ident")+
  ggtitle("CCA")
DimPlot(sce_scvi, reduction = "umap", group.by = "orig.ident")+
  ggtitle("scvi")


DimPlot(sce_cca, reduction = "umap", label = T)+
  ggtitle("CCA")
DimPlot(sce_scvi, reduction = "umap", label = T)+
  ggtitle("scvi")

然后就是細(xì)胞注釋了:我的建議還是手動(dòng)荚醒!


#================================================================================
library(Seurat)
library(ggplot2)

Allmarkers <- FindAllMarkers(sce_cca, logfc.threshold = 0.3, min.pct = 0.3, only.pos = T)
write.csv(Allmarkers, file = 'Allmarkers.csv')
#================================================================================
#Manual annotation, reference to published articles
markers <- c("Pparg", "Myh11", "Mrc1", "Flt1", "Col11a1", "Mymk", "Pax7", "Pdgfra","Ttn","Sox2")
DotPlot(sce_cca, features = markers, col.min = 0)+coord_flip()
FeaturePlot(sce_cca, features = )

#20 Adipocytes
#19 SMC
#13 Macrophages
#14 Endothelial
#7,10,21 Tenocytes
#9 Myoblasts
#11,12 MuSCs
#0,1,3,22 Mesenchymal
#2,4,5,6,8,15,16,18 Myonuclei
#17 NPCs

差異基因的分析和V4一樣:

#所有細(xì)胞類型中兩組的差異
celltypes <- unique(sce_cca$celltype)
DEGs_celltype <- list()

for (i in 1:length(celltypes)) {
  
  data = subset(sce_cca, celltype==celltypes[i])
  deg = FindMarkers(data,
                    group.by="orig.ident",
                    ident.1 = 'GO',
                    ident.2 = "WT",
                    logfc.threshold=0.25,
                    min.pct = 0.25)
  
  DEGs_celltype[[i]] <- deg
  names(DEGs_celltype)[i] <- celltypes[i]
  
}

這就是Seurat V5的基本分析了,就這么簡(jiǎn)單隆嗅,沒(méi)有什么難的地方界阁。其他詳細(xì)內(nèi)容請(qǐng)?jiān)诠倬W(wǎng)觀看,給出的步驟很詳細(xì)了胖喳!詳細(xì)請(qǐng)參考:https://mp.weixin.qq.com/s/s0FlOruxzPEYcXfwfJd33Q

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末泡躯,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子丽焊,更是在濱河造成了極大的恐慌较剃,老刑警劉巖,帶你破解...
    沈念sama閱讀 206,839評(píng)論 6 482
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件技健,死亡現(xiàn)場(chǎng)離奇詭異写穴,居然都是意外死亡,警方通過(guò)查閱死者的電腦和手機(jī)雌贱,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 88,543評(píng)論 2 382
  • 文/潘曉璐 我一進(jìn)店門确垫,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái),“玉大人帽芽,你說(shuō)我怎么就攤上這事删掀。” “怎么了导街?”我有些...
    開(kāi)封第一講書(shū)人閱讀 153,116評(píng)論 0 344
  • 文/不壞的土叔 我叫張陵披泪,是天一觀的道長(zhǎng)。 經(jīng)常有香客問(wèn)我搬瑰,道長(zhǎng)款票,這世上最難降的妖魔是什么控硼? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 55,371評(píng)論 1 279
  • 正文 為了忘掉前任,我火速辦了婚禮艾少,結(jié)果婚禮上卡乾,老公的妹妹穿的比我還像新娘。我一直安慰自己缚够,他們只是感情好幔妨,可當(dāng)我...
    茶點(diǎn)故事閱讀 64,384評(píng)論 5 374
  • 文/花漫 我一把揭開(kāi)白布。 她就那樣靜靜地躺著谍椅,像睡著了一般误堡。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上雏吭,一...
    開(kāi)封第一講書(shū)人閱讀 49,111評(píng)論 1 285
  • 那天锁施,我揣著相機(jī)與錄音,去河邊找鬼杖们。 笑死悉抵,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的摘完。 我是一名探鬼主播姥饰,決...
    沈念sama閱讀 38,416評(píng)論 3 400
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼描焰!你這毒婦竟也來(lái)了媳否?” 一聲冷哼從身側(cè)響起栅螟,我...
    開(kāi)封第一講書(shū)人閱讀 37,053評(píng)論 0 259
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤荆秦,失蹤者是張志新(化名)和其女友劉穎,沒(méi)想到半個(gè)月后力图,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體步绸,經(jīng)...
    沈念sama閱讀 43,558評(píng)論 1 300
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 36,007評(píng)論 2 325
  • 正文 我和宋清朗相戀三年吃媒,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了瓤介。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 38,117評(píng)論 1 334
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡赘那,死狀恐怖刑桑,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情募舟,我是刑警寧澤祠斧,帶...
    沈念sama閱讀 33,756評(píng)論 4 324
  • 正文 年R本政府宣布,位于F島的核電站拱礁,受9級(jí)特大地震影響琢锋,放射性物質(zhì)發(fā)生泄漏辕漂。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 39,324評(píng)論 3 307
  • 文/蒙蒙 一吴超、第九天 我趴在偏房一處隱蔽的房頂上張望钉嘹。 院中可真熱鬧,春花似錦鲸阻、人聲如沸跋涣。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 30,315評(píng)論 0 19
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)仆潮。三九已至,卻和暖如春遣臼,著一層夾襖步出監(jiān)牢的瞬間性置,已是汗流浹背。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 31,539評(píng)論 1 262
  • 我被黑心中介騙來(lái)泰國(guó)打工揍堰, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留鹏浅,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 45,578評(píng)論 2 355
  • 正文 我出身青樓屏歹,卻偏偏與公主長(zhǎng)得像隐砸,于是被迫代替她去往敵國(guó)和親。 傳聞我的和親對(duì)象是個(gè)殘疾皇子蝙眶,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 42,877評(píng)論 2 345

推薦閱讀更多精彩內(nèi)容