今天在單位加班做測試(泥煤的我怎么老加班4陕怼!?缜纭)欧聘,測試最近做的東西的耗電情況如何。
這方面比較悲劇的是端盆,為了可以得到不被干擾的數(shù)值怀骤,每次測試都是把手機的電充滿,然后干跑二十分鐘焕妙。于是算上充電的時間蒋伦,折騰一次至少半小時沒了。
于是就想到焚鹊,這次回學校痕届,見到不少學弟,其中有一個學霸類型的學弟問了我老板一個問題末患,關(guān)于量子場論中的場的爷抓。
大意就是說,薛定諤方程用的是哈密頓算法阻塑,而路徑積分的作用量用的是拉氏量而非哈密頓量,同時我們又知道拉氏量和哈密頓量并不總能一一對應(有拉氏量必然可以通過變換得到哈密頓量果复,但對于非保守體系這反過來的過程就不一定能做到了)陈莽,那這里是否會有問題?
這個問題最后導師給的回答其實和原問題沒啥關(guān)系,主要集中在什么是正則量子化什么是路徑積分量子化這個更一般性的問題上走搁。
于是我就在想了——你看独柑,開場白這么大一串終于引出正式的廢話了——場這貨到底是什么?
正好我寫簡書這么久了私植,還從來沒扯過我的專業(yè)忌栅,所以這2014年第一篇簡書就扯扯我的專業(yè)吧。
首先曲稼,我們需要明白一下索绪,現(xiàn)代物理大概是什么樣的。
有一個耳熟能詳?shù)墓适乱恢痹诿耖g流傳贫悄,那就是現(xiàn)代物理是在老物理大廈上空的兩朵烏云上建立起來的瑞驱。這兩朵烏云最終一個導致了相對論,一個引出了量子論窄坦。
現(xiàn)代物理的兩個核心唤反,就是這兩貨。
但鸭津,烏云之所以是烏云彤侍,最關(guān)鍵的要素就是——它夠烏。
于是乎逆趋,物理發(fā)展到了現(xiàn)在盏阶,這兩朵烏云依然可以說在那里烏青著——相對論和量子論至今還沒有徹底揉合在一起。
這么說其實并不能算全OK父泳,這要看你怎么說相對論和量子論了般哼。
比如說吧,我們?nèi)绻驹谧钤嫉南鄬φ摰慕嵌然菡此^的狹義相對論的角度蒸眠,那么相對論和量子論已經(jīng)算是融合了的,那就是“相對論性量子力學”和“量子場論”杆融,這兩貨都是狹義相對論和量子理論的雜交品楞卡。
那為什么還說這兩朵烏云沒有完全融合呢?怪就怪在這“狹義”兩字上——既然有狹義脾歇,那么當然有廣義了蒋腮。從英文原文的角度來說,狹義相對論是“特殊化相對性理論”藕各,而廣義相對論是“一般化相對性原理”池摧,所以光看名字就知道光有狹義相對論和量子理論的融合這不算個事。
問題就來了激况,這廣義相對論很不安分作彤。
廣義和狹義的基本區(qū)別膘魄,在于:狹義相對論說的是時空整體總能和一個我們所熟悉的閔科夫斯基時空對應弃酌,而不管觀測者怎么運動髓堪,而廣義相對論則說匹摇,哪怕只從時空的某個局部點來看肆饶,也是如此鹃共。
說得物理一點婴梧,就是狹義相對論認為叹侄,物理規(guī)律在(平直的)時空整體上總是各向同性的艺沼,而廣義相對論則認為即便在任意時空上胰舆,微觀上也是如此骚露。
這兩個之所以有這么一種看似很蛋疼的區(qū)別,就在于狹義相對論還沒開始考慮引力思瘟,而廣義相對論考慮了荸百。
從狹義到廣義的思想再進一步,就是所謂的規(guī)范場思想了——不但在時空上如此滨攻,在內(nèi)秉空間也是如此够话。
這太抽了,等下再說光绕。
說場的意義為什么要先說相對論女嘲?因為相對論開啟了一個物理哲學上全新的綱領(lǐng)——幾何綱領(lǐng)。而場綱領(lǐng)是幾何綱領(lǐng)的自然延續(xù)诞帐。
PS:所謂綱領(lǐng)欣尼,就和后來量子理論中的各種詮釋一樣,是你理解物理理論與物理觀念的一套概念體系停蕉。
在幾何綱領(lǐng)之前愕鼓,力這個概念本身和幾何是一點關(guān)系都沒有的。力就是力慧起,比如電力通過電力線來表示菇晃,磁力通過磁力線來表示,它們的傳遞和作用都看作是一種抽象的存在——通過可以被具象化的力線蚓挤,我們清楚地“看到”了力的傳播和作用磺送。這就是幾何綱領(lǐng)之前的力的圖景。
從廣義相對論開始灿意,一個新的思維被引入了——力可以不是這么抽象的存在估灿,而是某種物理實在的幾何表現(xiàn)——比如說,時空作為一個物理實在缤剧,它的形變形成了引力——而這形變就是一種幾何屬性馅袁。
因此,幾何綱領(lǐng)的主要內(nèi)涵荒辕,就是說司顿,相互作用可以被表述為物理實在的幾何屬性芒粹。比如說,規(guī)范場論和廣義相對論大溜,都是這么一種思路。
但估脆,即便是幾何綱領(lǐng)也分強弱兩個版本钦奋,強幾何綱領(lǐng)認為時空是幾何的,而弱幾何綱領(lǐng)則認為時空是時空疙赠,幾何只是正好描述了時空付材。這里的差距可以自己感受一下。
我們跳躍一下圃阳,這里就可以穿插正文之前的廢話中所提到的對場的理解了——場是物理實在還是物理描述厌衔?如果場是物理實在,那么狄拉克方程和克萊茵方程就給出了這個物理實在的形態(tài)捍岳;而如果場是物理描述富寿,那么狄拉克方程和克萊茵方程所給出的其實只是真正的物理——粒子——的量子描述——幾率波。這兩個觀點中的物理實在不同锣夹,所以許多細節(jié)的理解就會變得很不一樣页徐。比如在后一個觀點上我們才能說二次量子化,在前一個觀點中場還是經(jīng)典產(chǎn)物银萍,哪來的“第二次”量子化变勇?場論只是對經(jīng)典場的一次直接量子化而已。
然后再閃回到相對論中贴唇。
幾何綱領(lǐng)進一步發(fā)展搀绣,就是后來的場綱領(lǐng)。
就如前面所說戳气,廣義相對論將狹義相對論的原理從平直時空推廣到了任意幾何形態(tài)的時空链患,從而也將結(jié)論從時空整體變成了在時空局部成立。
按照這個思路再進一步物咳,我們就可以得到規(guī)范的思想——這最早就是Weyl在廣義相對論上所作的锣险。我們認為一個屬性在時空局部上的變化應該依然是滿足物理的,于是Weyl將標度變換作為一個規(guī)范元素览闰,得到了Weyl不變量和Weyl張量等等芯肤。但這個思想在廣義相對論上沒發(fā)展下去,因為實在沒看出有什么苗頭压鉴,但這個想法卻在量子場論中得到了發(fā)展崖咨。
好,我們現(xiàn)在就穿越到兩朵烏云的另一朵上了油吭。
什么是量子場論击蹲?
量子理論是一個很宏大的框架署拟,而且,由于歷史上的原因歌豺,量子顧名思義就被理解為是“一份一份”的推穷。
比如,能量是一份一份的类咧,動量是一份一份的馒铃,粒子所在位置是一份份的,電荷也是一份份的痕惋。這就是最初展現(xiàn)給我們看到的量子——當然区宇,人生若只如初見,這總是美好的值戳,但事實卻不是如此议谷。我們在以后會看到其實量子不一定是這種分立的,反而可能是超連續(xù)的堕虹,比如路徑積分卧晓。
量子理論的這一框架的主要思想,被稱為量子化——但鲫凶,很可惜禀崖,我們其實不知道究竟什么是量子化,我們只是知道怎么去做量子化螟炫。
就好比一個古代人手上拿著計算器波附,不知道其原理,但能用來計算1+1=2昼钻。
是為“知其然不知其所以然”也掸屡。
量子理論的詮釋,一如力的綱領(lǐng)然评,有很多種仅财,歷史上最有名的(但未必是最正確的)就是哥本哈根詮釋,將意識碗淌、觀測和量子態(tài)塌縮聯(lián)系在了一起盏求,這讓很多宗教人士浮想聯(lián)翩,到今天依然在往這上面浮想亿眠,而不愿塵歸塵土歸土上帝的歸上帝凱撒的歸凱撒碎罚。
量子論在發(fā)展的過程中,有一道坎是繞不過去的纳像,那就是相對論所預言的相對論效應荆烈。
為了解決這個問題,我們在傳統(tǒng)量子理論的基礎(chǔ)上發(fā)展出了相對論性量子力學——就是將量子理論結(jié)合了狹義相對論而搞出來的(作為對比,廣義相對論吸收了量子場論也搞了一個東西憔购,不過是半成品宫峦,就是彎曲時空的量子場論,這貨我看到有民科把玩過玫鸟,饒是驚人)导绷。
相對論性量子力學還不是量子場論,雖然他們具有驚人相似的外表(也就是數(shù)學)屎飘。
大家最熟悉的诵次,就是為了能得到相對論效應情況下的哈密頓量,兩個人從不同的角度出發(fā)枚碗,得到了兩個著名的公式——從等式左右平方一下玩玩出發(fā),我們得到了克萊茵方程铸本;從把根號硬開出來折騰出發(fā)肮雨,我們得到了狄拉克方程——由此可見,狄拉克的數(shù)學功底就是牛箱玷。
這里怨规,這兩個方程,連同最早我們所接觸的薛定諤方程(別誤會锡足,薛定諤方程是一大類方程的通稱舶得,狄拉克方程和克萊茵方程也屬于薛定諤方程的一種沐批。這里所說的“最早接觸的薛定諤方程”是說歷史上最早被推演出來的那個方程)先馆,計算中所用到的場算符的物理意義都是相同的煤墙,那就是描述粒子的量子幾率幅的幾率波仿野,換言之本身都沒有物理意義设预,而只有描述物理實在的數(shù)學意義魄梯。
緊接著宾符,我們發(fā)現(xiàn)光有這樣的薛定諤方程(注意上面的括號所說的內(nèi)容)還沒有用魏烫,我們無法描述粒子被創(chuàng)造或者消失掉的過程,因此稀蟋,在傳統(tǒng)量子力學所熟悉的粒子數(shù)表象或者說Fock表象的基礎(chǔ)上退客,我們將其與相對論性量子力學結(jié)合萌狂,就有了所謂的“二次量子化”,描述粒子的波函數(shù)本身可以被產(chǎn)生湮滅算符所作用务傲,也被量子化了。到這里糯而,我們就得到了最終版的粒子量子化理論熄驼。
當然瓜贾,我們知道經(jīng)典物理中也是有場的祭芦,并不只有幾率幅這種東西。
經(jīng)典物理中的場是什么?那就是電磁場——在量子理論發(fā)展的早期仰禀,我們也只知道電磁場是場。本來說不定會認為有電磁場和光場答恶,但電磁力學統(tǒng)一了兩者。當然悬嗓,引力場也是場,不過這不是相對論的天下么包竹?
既然我們可以研究電子的量子行為曙求,那我們自然會去研究電磁場的量子行為,于是經(jīng)過一連串的折騰,我們鼓搗出了電動力學的量子形式堰氓,也就是對電磁場的量子化双絮。
有趣的事情就這么來了囤攀。
我們發(fā)現(xiàn),電磁場的形式真的是太好了漓骚,太和諧了蝌衔,以至于我們不得不去猜測長得非常接近的克萊茵方程中的那家伙是不是也是一個場?
請注意蝌蹂,這是沒有什么深刻道理的猜測噩斟,僅此而已,只不過日后發(fā)現(xiàn)這么想似乎沒什么錯而已孤个,和實驗符合得挺好剃允。
于是乎,直到現(xiàn)在,量子場論才終于和“量子幾率幅”這個數(shù)學貨沒了關(guān)系斥废,自己具有了獨立的物理意義椒楣,或者說成了物理上的客觀實在,成了本體論的主角营袜。
要注意撒顿,既然現(xiàn)在我們說前面克萊茵方程、狄拉克方程中的波函數(shù)是和電磁場理論中的電磁場是一樣的場荚板,那就是說凤壁,這些場都是經(jīng)典的東西——經(jīng)典的場。
在我們將場的作用量丟到路徑積分的指數(shù)位置上以前跪另,或者在我們將經(jīng)典泊松括號替換為量子泊松括號以前(這兩個方法分別就是路徑積分量子化和正則量子化)拧抖,場都是經(jīng)典的,不是量子的免绿。包括后面的規(guī)范場唧席,也是經(jīng)典的,不是量子的嘲驾。什么時候變量子了淌哟?我們把規(guī)范場的作用量丟去路徑積分,或者把泊松括號換個意義辽故,好徒仓,這回就從經(jīng)典規(guī)范場變成了量子規(guī)范場。
可見誊垢,和相對論性量子力學截然不同掉弛,場論中到這里為止的場和量子一點關(guān)系都沒有。
于是喂走,后來的量子化殃饿,相對論性量子力學中是為了解決粒子的產(chǎn)生湮滅等動態(tài)問題,而在場論中則只是簡單的場的量子化芋肠。于是前者被稱為“二次量子化”乎芳,后者被稱為“場量子化”。
有人會說帖池,為什么場不用考慮“二次量子化”秒咐?場被量子化以后怎么不用考慮產(chǎn)生湮滅問題?這是因為碘裕,我們發(fā)現(xiàn)場的解中有各種解(經(jīng)典的)携取,而這些解可以組合出各種你所要的場,因此場本身就包含了自身的出現(xiàn)和消失帮孔,不需要另行操作了雷滋。
從綱領(lǐng)的角度來說不撑,相對論性量子力學肯定是談不上幾何綱領(lǐng)或者場綱領(lǐng)的,在它的世界體系中場純粹是數(shù)學道具晤斩,不具有本體性和實在性——當然焕檬,我們可以來看AB效應和AC效應,這里其實所謂的勢就是場澳泵,不過是電磁場实愚,因此在相對論性量子力學中我們必須精分地認為,電磁場的場是場兔辅,電子的場是幾率波腊敲,不是場。
而量子場論维苔,則無疑是繼承自幾何綱領(lǐng)的——不過在規(guī)范場論之前碰辅,我們倒不能這么嚴格地說它所遵從的就是幾何綱領(lǐng),而只能說是幾何綱領(lǐng)的發(fā)展——場綱領(lǐng)介时。在這里没宾,場具有了本地地位,而且我們不需要精分地認為何者為場何者非場沸柔,一切都是場循衰。
接下來,就是從廣義相對論就出現(xiàn)的規(guī)范的思想引入量子場論的時刻了褐澎。
量子場論說白了還是一個框架羹蚣,就和之前所說的量子力學一樣,只是一個框架乱凿。
框架的好處就是青菜蘿卜都能往里扔,但壞處就是如果你就是想吃雞蛋餅咽弦,那框架是不會直接給你雞蛋餅的徒蟆。
所以,我們想用量子場論來處理電磁問題型型、核力問題段审,以及各種別的問題,但我們卻發(fā)現(xiàn)這組框架太宏大了闹蒜,以至于我們壓根不知道怎么在這個籮筐里找到我們要吃的雞蛋餅寺枉。
而就在這個時候,規(guī)范場論出現(xiàn)了绷落。
這貨還是一個經(jīng)典理論姥闪,除非被量子化。
規(guī)范場論是場論的子類砌烁,多出來的內(nèi)容是一類很有意思的限制筐喳,而且這類限制可以被很好地用幾何語言描述出來催式,那就是——內(nèi)秉空間的規(guī)范變換不改變物理。
不改變是一個很有用的概念避归,術(shù)語一點就叫做不變性荣月。
比如,如果時空中每個位置的場都做相同的變換梳毙,并且在這個變換下物理性質(zhì)不發(fā)生改變哺窄,那我們就能得到物理上相關(guān)的守恒定律,比如大家熟悉的能量守恒账锹,對應的就是時間平移不變性萌业;動量守恒,就是空間平移不變性牌废;角動量守恒咽白,就是空間旋轉(zhuǎn)不變性。
而規(guī)范不變性鸟缕,就是規(guī)范場論比量子場論多出來的那個東西晶框,則和上一段所說的不變性差別在于——這里只考慮局部。
比如懂从,全局時間平移不變是全局不變性授段,那么在局部做一個時間平移如果也不變,這就是規(guī)范不變性番甩,由此得到的定律就是規(guī)范場的基本規(guī)律侵贵。
在規(guī)范場論中,這種規(guī)范不變性所作用的缘薛,就是各種內(nèi)秉空間窍育,比如說電磁學的內(nèi)秉空間就是U(1)群所描述的。如果我們做內(nèi)秉空間的一個轉(zhuǎn)動宴胧,要求全局做相同的轉(zhuǎn)動物理不變漱抓,那么就得到了電荷守恒(或者說U(1)群的力荷守恒);如果要求全局做不同的轉(zhuǎn)動物理不變恕齐,也就是規(guī)范不變乞娄,那我們就得到了電動力學中的電磁場作用量,從而也就得到了電動力學显歧。
好仪或,用通俗一點的話來說。
我們可以想象這么一個時空士骤,其中時空每個點上都有一個微型時空門范删,通往一個個彼此獨立但完全相同的小宇宙。這些小宇宙之間都有聯(lián)系拷肌,而規(guī)范不變性則等于是說:一個位置上的小宇宙發(fā)生了變化瓶逃,那么這種變化必然會改變這種聯(lián)系束铭,而這種聯(lián)系的改變又會反過來影響其所連接著的小宇宙,從而向外擴散出去厢绝。這小宇宙的性質(zhì)就是電荷契沫,而小宇宙之間的聯(lián)系就是勢場,這種聯(lián)系的分布性質(zhì)就是場強昔汉。
而用幾何的話來說懈万,就是時空作為一個幾何體,同時也是更大的幾何體“纖維叢”的基底靶病。每個時空點上的“纖維”就是內(nèi)秉空間会通,而纖維叢的聯(lián)絡就是勢場,纖維叢的曲率就是場強娄周。
或者涕侈,我們甚至可以用M理論的觀點來看——時空是11維的,但只有4個維度是展開的煤辨,7個維度是卷成一圈的裳涛。這卷成一圈的7個維度就可以看作是上面所說的纖維,那么時空的彎曲就可以分解為展開維度的彎曲——引力众辨,和蜷縮維的彎曲——規(guī)范場端三。這種彎曲在足夠小的時候,可以得到和纖維叢觀點一致的結(jié)論鹃彻,從而讓抽象的難以理解的數(shù)學名詞“纖維叢”被“翻譯”為容易直觀想象的極小的蜷縮維的幾何郊闯。
這就是非常幾何的觀點了。
那么蛛株,場綱領(lǐng)和幾何綱領(lǐng)到底有什么分別呢团赁?
我們并不能簡單地將場理解為某種特定的幾何客體,因為場綱領(lǐng)的場事實上還有更豐富的內(nèi)涵谨履。事實上欢摄,場是這么一種物理實在,其代表了同一類對象的各種可能物理狀態(tài)的集合與分布屉符。因此,場不僅僅是幾何的锹引,更多是物理的矗钟。也因此,在場綱領(lǐng)中嫌变,幾何是描述的語言吨艇,算是弱幾何綱領(lǐng)的思路。但和相對論性量子力學的綱領(lǐng)要求不同腾啥,場綱領(lǐng)的場具有獨立的實在性东涡,而不是只是附庸冯吓。
更進一步,和量子場論中的場不同疮跑,現(xiàn)在規(guī)范場論中的場都能找到幾何對應组贺,至少也是很明確的數(shù)學對應。比如電磁場這樣的規(guī)范勢能場祖娘,對應的就是纖維叢的聯(lián)絡失尖,而帶有規(guī)范力荷的粒子的場則是纖維叢對應群的生成元(從規(guī)范場論來說,先是引入的群渐苏,然后再賦予群一個幾何圖像纖維)掀潮,等等等等。
規(guī)范場論當然也不是沒有問題的琼富。就如規(guī)范場論的出現(xiàn)是為了解決量子場論無法給出踏踏實實的物理的問題仪吧,規(guī)范場論的發(fā)展也遇到了一個很糟糕的問題,就是規(guī)范場論要求規(guī)范場的媒介粒子(比如電磁場的媒介粒子就是光子)是無質(zhì)量的鞠眉,或者說其靜質(zhì)量必須為0薯鼠,而我們知道除了光子,強弱作用力的媒介粒子的靜質(zhì)量都不是0凡蚜。
為了解決這個問題人断,就引入了對稱性自發(fā)破缺和Higgs機制〕可見恶迈,Higgs機制是規(guī)范場論的必然結(jié)果——而如果沒有Higgs機制,規(guī)范場論就和現(xiàn)實一點關(guān)系沒有谱醇。我們?nèi)ツ暌呀?jīng)基本算是確定找到了Higgs粒子暇仲,所以規(guī)范場論這一套基本算是被確認了。
可Higgs機制也只是解決了規(guī)范場論乃至量子場論諸多問題中的一個問題副渴,剩下的問題只能說是路漫漫其修遠兮奈附,吾將上下而求索。
在對稱性自發(fā)破缺后煮剧,人們進一步發(fā)散思維斥滤,開始想這么一個問題——對稱性,就是群嘛勉盅,規(guī)范場論的核心也是群嘛佑颇,所以是否可能所有的力都其實是同一個群的,然后這個群破缺了草娜,產(chǎn)生了一系列的碎片挑胸,這些碎片就是電磁力、若相互作用力和強相互作用力宰闰。
這個思想就給出了大統(tǒng)一茬贵,也即給出了標準模型——乃至最后包含引力的TOE簿透。
上面基本算是大致科普了一下整個脈絡,介紹了一些綱領(lǐng)的基本想法解藻。
下面來扯一點扯淡的東西老充。
比如說,在上面整個圖景中舆逃,有一個很重要的問題還沒有解決蚂维,那就是廣義相對論和規(guī)范場論目前沒法融合。
從數(shù)學的角度來說路狮,廣義相對論是流形聯(lián)絡的動力學虫啥,而規(guī)范場論是纖維叢聯(lián)絡的動力學,后者的纖維叢的底流形是前者奄妨。這兩者基本算是風馬牛不相及的涂籽。因此規(guī)范場論的框架不能作用于廣義相對論,而廣義相對論的框架也不能作用于規(guī)范場論砸抛。更細致一點评雌,廣義相對論探討的是外部對稱性,而規(guī)范場論則是內(nèi)部對稱性直焙。我們自然可以硬做景东,將外部對稱性當內(nèi)部對稱性來做(為什么不是反過來?因為規(guī)范場論我們知道如何量子化奔誓,廣義相對論我們不知道如何量子化)斤吐,這就是局部彭加萊規(guī)范的規(guī)范場論。但這貨不是什么好東西厨喂,60~70年代就有人研究過和措,沒什么好的發(fā)展。不過近來暗物質(zhì)興起蜕煌,彭加萊規(guī)范說不定可以和暗物質(zhì)有聯(lián)系這也難講派阱。
另一條路,就是擴大時空維度然后做緊致化斜纪,比如歷史上的超引力就是如此贫母。將時空從4維拓展到5維后發(fā)現(xiàn)緊致化掉第五維得到的理論自然包含了麥克斯韋的電動力學(存在于被緊致化的蜷縮維中,而緊致化基本可以被視為將外部維度“縮”到纖維中盒刚,從而將纖維和底流形腺劣、內(nèi)部對稱性和外部對稱性聯(lián)系在了一起),于是大家很開心地將維度拓展為11維伪冰,發(fā)現(xiàn)4個廣延維容納了廣義相對論誓酒,7個蜷縮維容納了標準模型的規(guī)范場論樟蠕。一切都很美好贮聂,除了這樣算出來的荷質(zhì)比不對靠柑。
再再另一方面,我們發(fā)現(xiàn)一些數(shù)學手段是可以將外部對稱性和內(nèi)部對稱性結(jié)合起來的吓懈,比如大名如雷貫耳的超對稱歼冰。超對稱不但可以結(jié)合外部對稱性和內(nèi)部對稱性,它還可以將費米子和玻色子統(tǒng)一起來耻警,使得從一個被超對稱作用一下就變到另一個隔嫡。更神奇的是,幾乎所有現(xiàn)實的量子場論都面臨的重整化與發(fā)散問題甘穿,在超對稱作用下是可以得到緩解的(發(fā)散分紅外和紫外腮恩,超對稱對紫外發(fā)散具有很好的修正)。再加上超對稱后的理論會有自旋2的無質(zhì)量粒子温兼,被人認為是引力子秸滴,于是就和弦論以及上面所說的拓展引力理論融合,得到了超弦和超引力募判,并最終得到了M理論荡含。
只不過,有這么一個問題——我們至今都沒證明超對稱的正確性届垫。事實上释液,LHC已經(jīng)基本證明了N=1的超對稱理論是錯誤的。我們當然可以找比最簡單的N=1復雜的N=2或者更高的理論装处,但在奧卡姆剃刀下我們一邊堅持極簡主義一邊放棄最簡的N=1误债,這要么是物理學家很精分,要么就是上帝很精分符衔。
同樣的找前,弦所預言的大尺度額外維也基本被槍斃了——我們只能在“不那么大”的大尺度下找額外維,也就是提高LHC能級判族。
幾個振奮人心的東西里躺盛,超對稱很尷尬,大尺度被玩小了形帮,大概也就全息原理還能堅挺槽惫,但我們其實也只理論證明了AdS/CFT,距離Grivity/Gauge還很遠(最近看到有人發(fā)文說證明了某類特殊時空中的G/G全息對偶辩撑,這倒是很有意思)界斜,而且這貨其實現(xiàn)在主要是凝聚態(tài)的人用來算東西的(思路就是這里算規(guī)范場太難了?行合冀,我們換到對偶的情況下算引力去各薇,一算,嘿,真變?nèi)菀琢耍峭判。?
還有一些比這些都更基本的問題开缎,就是其實我們到目前也不知道什么是正則量子化。
我們知道正則量子化就是把玻色子的經(jīng)典泊松括號換成量子對易子關(guān)系林螃,或者把費米子的經(jīng)典泊松括號換成量子反對易子關(guān)系——這么做下來的結(jié)果基本總是對的奕删,但問題是我們并不知道我們?yōu)楹我@么來做。
就這點來說疗认,或許路徑積分更好一點完残,因為它的意義至少比什么是正則量子化要來得明顯,但路徑積分從數(shù)學上來說卻是完全的一團糟横漏,我們甚至寫不出一個通用的積分體元谨设,而Wick轉(zhuǎn)動也只是為了保證能算下去而做的胡搞,數(shù)學家看了吐槽不止缎浇。
當然了铝宵,經(jīng)典泊松括號被視為傳統(tǒng)幾何空間(也就是傳統(tǒng)群的群流形)中運動(體系演化)所對應的相空間,一個辛流形(算上時間的話就是切觸流形)华畏,而有人提出量子化以后的情況其實對應了量子群的群流形上體系演化的相空間鹏秋。但這個說法本身有點雞蛋問題循環(huán)論證的味道,沒多大物理意義亡笑。
附帶一提侣夷,F(xiàn)insler如果從經(jīng)典時空的彭加萊群的破缺的角度來看的話,這種破缺給出的群的確和量子群有一定的關(guān)聯(lián)仑乌,從而Finsler流形說不定和量子化背后的時空背景有一點點的聯(lián)系百拓。但這貨本身的邪惡程度實在是爆表,更何況真的做量子化以后晰甚,時空流形本身的結(jié)構(gòu)已經(jīng)不是特別重要了衙传。
站在當下的理論物理角度,其實上面這些問題都不是很重要厕九。
不知道什么是正則量子化這一個量子理論的基礎(chǔ)并不重要蓖捶,重要的是你計算出來的東西能和實驗對得上——不管你的計算在數(shù)學家看來多么充滿槽點。
所以扁远,我們可以看到俊鱼,無論是弦還是圈,現(xiàn)在基本都不談物理意義畅买。比如圈談物理談到Wilson圈就結(jié)束了并闲,但Wilson圈能算物理么?反正在我看來這還是數(shù)學谷羞。
實驗跟上來以前帝火,我們也的確只能談數(shù)學,這倒也是沒辦法的事情。
站在這個角度來說犀填,現(xiàn)代物理其實還是回到了盲人摸象的時代萌京,只不過現(xiàn)在我們不是用手摸,是用筆算宏浩。