12.spark sql之讀寫數(shù)據(jù)

簡介

??Spark SQL支持多種結(jié)構(gòu)化數(shù)據(jù)源遥昧,輕松從各種數(shù)據(jù)源中讀取Row對象俱笛。這些數(shù)據(jù)源包括Parquet、JSON妆够、Hive表及關(guān)系型數(shù)據(jù)庫等识啦。

??當(dāng)只使用一部分字段時(shí),Spark SQL可以智能地只掃描這些字段神妹,而不會像hadoopFile方法一樣簡單粗暴地掃描全部數(shù)據(jù)颓哮。

Parquet

??Parquet是一種流行的列式存儲格式,可以高效地存儲具有嵌套字段的記錄鸵荠。Parquet自動(dòng)保存原始數(shù)據(jù)的類型冕茅,當(dāng)寫入Parquet文件時(shí),所有的列會自動(dòng)轉(zhuǎn)為可空約束腰鬼。

  • scala
// Encoders for most common types are automatically provided by importing spark.implicits._
import spark.implicits._

val peopleDF = spark.read.json("examples/src/main/resources/people.json")

// DataFrames can be saved as Parquet files, maintaining the schema information
peopleDF.write.parquet("people.parquet")

// Read in the parquet file created above
// Parquet files are self-describing so the schema is preserved
// The result of loading a Parquet file is also a DataFrame
val parquetFileDF = spark.read.parquet("people.parquet")

// Parquet files can also be used to create a temporary view and then used in SQL statements
parquetFileDF.createOrReplaceTempView("parquetFile")
val namesDF = spark.sql("SELECT name FROM parquetFile WHERE age BETWEEN 13 AND 19")
namesDF.map(attributes => "Name: " + attributes(0)).show()
// +------------+
// |       value|
// +------------+
// |Name: Justin|
// +------------+
  • java
import org.apache.spark.api.java.function.MapFunction;
import org.apache.spark.sql.Encoders;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;

Dataset<Row> peopleDF = spark.read().json("examples/src/main/resources/people.json");

// DataFrames can be saved as Parquet files, maintaining the schema information
peopleDF.write().parquet("people.parquet");

// Read in the Parquet file created above.
// Parquet files are self-describing so the schema is preserved
// The result of loading a parquet file is also a DataFrame
Dataset<Row> parquetFileDF = spark.read().parquet("people.parquet");

// Parquet files can also be used to create a temporary view and then used in SQL statements
parquetFileDF.createOrReplaceTempView("parquetFile");
Dataset<Row> namesDF = spark.sql("SELECT name FROM parquetFile WHERE age BETWEEN 13 AND 19");
Dataset<String> namesDS = namesDF.map(
    (MapFunction<Row, String>) row -> "Name: " + row.getString(0),
    Encoders.STRING());
namesDS.show();
// +------------+
// |       value|
// +------------+
// |Name: Justin|
// +------------+
  • python
peopleDF = spark.read.json("examples/src/main/resources/people.json")

# DataFrames can be saved as Parquet files, maintaining the schema information.
peopleDF.write.parquet("people.parquet")

# Read in the Parquet file created above.
# Parquet files are self-describing so the schema is preserved.
# The result of loading a parquet file is also a DataFrame.
parquetFile = spark.read.parquet("people.parquet")

# Parquet files can also be used to create a temporary view and then used in SQL statements.
parquetFile.createOrReplaceTempView("parquetFile")
teenagers = spark.sql("SELECT name FROM parquetFile WHERE age >= 13 AND age <= 19")
teenagers.show()
# +------+
# |  name|
# +------+
# |Justin|
# +------+
  • sql
CREATE TEMPORARY VIEW parquetTable
USING org.apache.spark.sql.parquet
OPTIONS (
  path "examples/src/main/resources/people.parquet"
)

SELECT * FROM parquetTable

JSON

??Spark SQL可以自動(dòng)推斷JSON數(shù)據(jù)集的結(jié)構(gòu)嵌赠,并加載為以Row為集合項(xiàng)的Dataset。

??默認(rèn)Spark SQL讀取的json文件不是常規(guī)的json文件熄赡,每一行必須包含一個(gè)獨(dú)立的姜挺、自包含的有效JSOn對象。對于常規(guī)的多行JSON文件彼硫,設(shè)置multiLine選項(xiàng)為true即可炊豪。

  • scala
// Primitive types (Int, String, etc) and Product types (case classes) encoders are
// supported by importing this when creating a Dataset.
import spark.implicits._

// A JSON dataset is pointed to by path.
// The path can be either a single text file or a directory storing text files
val path = "examples/src/main/resources/people.json"
val peopleDF = spark.read.json(path)

// The inferred schema can be visualized using the printSchema() method
peopleDF.printSchema()
// root
//  |-- age: long (nullable = true)
//  |-- name: string (nullable = true)

// Creates a temporary view using the DataFrame
peopleDF.createOrReplaceTempView("people")

// SQL statements can be run by using the sql methods provided by spark
val teenagerNamesDF = spark.sql("SELECT name FROM people WHERE age BETWEEN 13 AND 19")
teenagerNamesDF.show()
// +------+
// |  name|
// +------+
// |Justin|
// +------+

// Alternatively, a DataFrame can be created for a JSON dataset represented by
// a Dataset[String] storing one JSON object per string
val otherPeopleDataset = spark.createDataset(
  """{"name":"Yin","address":{"city":"Columbus","state":"Ohio"}}""" :: Nil)
val otherPeople = spark.read.json(otherPeopleDataset)
otherPeople.show()
// +---------------+----+
// |        address|name|
// +---------------+----+
// |[Columbus,Ohio]| Yin|
// +---------------+----+
  • java
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;

// A JSON dataset is pointed to by path.
// The path can be either a single text file or a directory storing text files
Dataset<Row> people = spark.read().json("examples/src/main/resources/people.json");

// The inferred schema can be visualized using the printSchema() method
people.printSchema();
// root
//  |-- age: long (nullable = true)
//  |-- name: string (nullable = true)

// Creates a temporary view using the DataFrame
people.createOrReplaceTempView("people");

// SQL statements can be run by using the sql methods provided by spark
Dataset<Row> namesDF = spark.sql("SELECT name FROM people WHERE age BETWEEN 13 AND 19");
namesDF.show();
// +------+
// |  name|
// +------+
// |Justin|
// +------+

// Alternatively, a DataFrame can be created for a JSON dataset represented by
// a Dataset<String> storing one JSON object per string.
List<String> jsonData = Arrays.asList(
        "{\"name\":\"Yin\",\"address\":{\"city\":\"Columbus\",\"state\":\"Ohio\"}}");
Dataset<String> anotherPeopleDataset = spark.createDataset(jsonData, Encoders.STRING());
Dataset<Row> anotherPeople = spark.read().json(anotherPeopleDataset);
anotherPeople.show();
// +---------------+----+
// |        address|name|
// +---------------+----+
// |[Columbus,Ohio]| Yin|
// +---------------+----+
  • python
# spark is from the previous example.
sc = spark.sparkContext

# A JSON dataset is pointed to by path.
# The path can be either a single text file or a directory storing text files
path = "examples/src/main/resources/people.json"
peopleDF = spark.read.json(path)

# The inferred schema can be visualized using the printSchema() method
peopleDF.printSchema()
# root
#  |-- age: long (nullable = true)
#  |-- name: string (nullable = true)

# Creates a temporary view using the DataFrame
peopleDF.createOrReplaceTempView("people")

# SQL statements can be run by using the sql methods provided by spark
teenagerNamesDF = spark.sql("SELECT name FROM people WHERE age BETWEEN 13 AND 19")
teenagerNamesDF.show()
# +------+
# |  name|
# +------+
# |Justin|
# +------+

# Alternatively, a DataFrame can be created for a JSON dataset represented by
# an RDD[String] storing one JSON object per string
jsonStrings = ['{"name":"Yin","address":{"city":"Columbus","state":"Ohio"}}']
otherPeopleRDD = sc.parallelize(jsonStrings)
otherPeople = spark.read.json(otherPeopleRDD)
otherPeople.show()
# +---------------+----+
# |        address|name|
# +---------------+----+
# |[Columbus,Ohio]| Yin|
# +---------------+----+
  • sql
CREATE TEMPORARY VIEW jsonTable
USING org.apache.spark.sql.json
OPTIONS (
  path "examples/src/main/resources/people.json"
)

SELECT * FROM jsonTable

Hive

??Spark SQL支持任何Hive支持的存儲格式(SerDe),包括文本文件拧篮、RCFiles词渤、ORC、Parquet串绩、Avro及Protocol Buffer等缺虐。

??如果已配置好hive環(huán)境,將hive-site.xml礁凡,core-site.xml(用于安全配置)高氮,hdfs-site.xml(HDFS配置)放到conf目錄下;如果沒有hive環(huán)境顷牌,Spark SQL會自動(dòng)在spark-warehouse(spark.sql.warehouse.dir配置項(xiàng))目錄下創(chuàng)建metastore_db剪芍。另外,需要賦予執(zhí)行spark應(yīng)用的用戶寫權(quán)限窟蓝。

  • scala
import java.io.File

import org.apache.spark.sql.Row
import org.apache.spark.sql.SparkSession

case class Record(key: Int, value: String)

// warehouseLocation points to the default location for managed databases and tables
val warehouseLocation = new File("spark-warehouse").getAbsolutePath

val spark = SparkSession
  .builder()
  .appName("Spark Hive Example")
  .config("spark.sql.warehouse.dir", warehouseLocation)
  .enableHiveSupport()
  .getOrCreate()

import spark.implicits._
import spark.sql

sql("CREATE TABLE IF NOT EXISTS src (key INT, value STRING) USING hive")
sql("LOAD DATA LOCAL INPATH 'examples/src/main/resources/kv1.txt' INTO TABLE src")

// Queries are expressed in HiveQL
sql("SELECT * FROM src").show()
// +---+-------+
// |key|  value|
// +---+-------+
// |238|val_238|
// | 86| val_86|
// |311|val_311|
// ...

// Aggregation queries are also supported.
sql("SELECT COUNT(*) FROM src").show()
// +--------+
// |count(1)|
// +--------+
// |    500 |
// +--------+

// The results of SQL queries are themselves DataFrames and support all normal functions.
val sqlDF = sql("SELECT key, value FROM src WHERE key < 10 ORDER BY key")

// The items in DataFrames are of type Row, which allows you to access each column by ordinal.
val stringsDS = sqlDF.map {
  case Row(key: Int, value: String) => s"Key: $key, Value: $value"
}
stringsDS.show()
// +--------------------+
// |               value|
// +--------------------+
// |Key: 0, Value: val_0|
// |Key: 0, Value: val_0|
// |Key: 0, Value: val_0|
// ...

// You can also use DataFrames to create temporary views within a SparkSession.
val recordsDF = spark.createDataFrame((1 to 100).map(i => Record(i, s"val_$i")))
recordsDF.createOrReplaceTempView("records")

// Queries can then join DataFrame data with data stored in Hive.
sql("SELECT * FROM records r JOIN src s ON r.key = s.key").show()
// +---+------+---+------+
// |key| value|key| value|
// +---+------+---+------+
// |  2| val_2|  2| val_2|
// |  4| val_4|  4| val_4|
// |  5| val_5|  5| val_5|
// ...
  • java
import java.io.File;
import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;

import org.apache.spark.api.java.function.MapFunction;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Encoders;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;

public static class Record implements Serializable {
  private int key;
  private String value;

  public int getKey() {
    return key;
  }

  public void setKey(int key) {
    this.key = key;
  }

  public String getValue() {
    return value;
  }

  public void setValue(String value) {
    this.value = value;
  }
}

// warehouseLocation points to the default location for managed databases and tables
String warehouseLocation = new File("spark-warehouse").getAbsolutePath();
SparkSession spark = SparkSession
  .builder()
  .appName("Java Spark Hive Example")
  .config("spark.sql.warehouse.dir", warehouseLocation)
  .enableHiveSupport()
  .getOrCreate();

spark.sql("CREATE TABLE IF NOT EXISTS src (key INT, value STRING) USING hive");
spark.sql("LOAD DATA LOCAL INPATH 'examples/src/main/resources/kv1.txt' INTO TABLE src");

// Queries are expressed in HiveQL
spark.sql("SELECT * FROM src").show();
// +---+-------+
// |key|  value|
// +---+-------+
// |238|val_238|
// | 86| val_86|
// |311|val_311|
// ...

// Aggregation queries are also supported.
spark.sql("SELECT COUNT(*) FROM src").show();
// +--------+
// |count(1)|
// +--------+
// |    500 |
// +--------+

// The results of SQL queries are themselves DataFrames and support all normal functions.
Dataset<Row> sqlDF = spark.sql("SELECT key, value FROM src WHERE key < 10 ORDER BY key");

// The items in DataFrames are of type Row, which lets you to access each column by ordinal.
Dataset<String> stringsDS = sqlDF.map(
    (MapFunction<Row, String>) row -> "Key: " + row.get(0) + ", Value: " + row.get(1),
    Encoders.STRING());
stringsDS.show();
// +--------------------+
// |               value|
// +--------------------+
// |Key: 0, Value: val_0|
// |Key: 0, Value: val_0|
// |Key: 0, Value: val_0|
// ...

// You can also use DataFrames to create temporary views within a SparkSession.
List<Record> records = new ArrayList<>();
for (int key = 1; key < 100; key++) {
  Record record = new Record();
  record.setKey(key);
  record.setValue("val_" + key);
  records.add(record);
}
Dataset<Row> recordsDF = spark.createDataFrame(records, Record.class);
recordsDF.createOrReplaceTempView("records");

// Queries can then join DataFrames data with data stored in Hive.
spark.sql("SELECT * FROM records r JOIN src s ON r.key = s.key").show();
// +---+------+---+------+
// |key| value|key| value|
// +---+------+---+------+
// |  2| val_2|  2| val_2|
// |  2| val_2|  2| val_2|
// |  4| val_4|  4| val_4|
// ...
  • python
from os.path import expanduser, join, abspath

from pyspark.sql import SparkSession
from pyspark.sql import Row

# warehouse_location points to the default location for managed databases and tables
warehouse_location = abspath('spark-warehouse')

spark = SparkSession \
    .builder \
    .appName("Python Spark SQL Hive integration example") \
    .config("spark.sql.warehouse.dir", warehouse_location) \
    .enableHiveSupport() \
    .getOrCreate()

# spark is an existing SparkSession
spark.sql("CREATE TABLE IF NOT EXISTS src (key INT, value STRING) USING hive")
spark.sql("LOAD DATA LOCAL INPATH 'examples/src/main/resources/kv1.txt' INTO TABLE src")

# Queries are expressed in HiveQL
spark.sql("SELECT * FROM src").show()
# +---+-------+
# |key|  value|
# +---+-------+
# |238|val_238|
# | 86| val_86|
# |311|val_311|
# ...

# Aggregation queries are also supported.
spark.sql("SELECT COUNT(*) FROM src").show()
# +--------+
# |count(1)|
# +--------+
# |    500 |
# +--------+

# The results of SQL queries are themselves DataFrames and support all normal functions.
sqlDF = spark.sql("SELECT key, value FROM src WHERE key < 10 ORDER BY key")

# The items in DataFrames are of type Row, which allows you to access each column by ordinal.
stringsDS = sqlDF.rdd.map(lambda row: "Key: %d, Value: %s" % (row.key, row.value))
for record in stringsDS.collect():
    print(record)
# Key: 0, Value: val_0
# Key: 0, Value: val_0
# Key: 0, Value: val_0
# ...

# You can also use DataFrames to create temporary views within a SparkSession.
Record = Row("key", "value")
recordsDF = spark.createDataFrame([Record(i, "val_" + str(i)) for i in range(1, 101)])
recordsDF.createOrReplaceTempView("records")

# Queries can then join DataFrame data with data stored in Hive.
spark.sql("SELECT * FROM records r JOIN src s ON r.key = s.key").show()
# +---+------+---+------+
# |key| value|key| value|
# +---+------+---+------+
# |  2| val_2|  2| val_2|
# |  4| val_4|  4| val_4|
# |  5| val_5|  5| val_5|
# ...

JDBC連接

??Spark SQL可以使用JDBC連接讀寫關(guān)系型數(shù)據(jù)庫中的數(shù)據(jù)罪裹。這種方式比使用spark core中的JdbcRDD要好,因?yàn)樯傻腄ataFrame可以很容易被處理。

  • scala
// Note: JDBC loading and saving can be achieved via either the load/save or jdbc methods
// Loading data from a JDBC source
val jdbcDF = spark.read
  .format("jdbc")
  .option("url", "jdbc:postgresql:dbserver")
  .option("dbtable", "schema.tablename")
  .option("user", "username")
  .option("password", "password")
  .load()

val connectionProperties = new Properties()
connectionProperties.put("user", "username")
connectionProperties.put("password", "password")
val jdbcDF2 = spark.read
  .jdbc("jdbc:postgresql:dbserver", "schema.tablename", connectionProperties)

// Saving data to a JDBC source
jdbcDF.write
  .format("jdbc")
  .option("url", "jdbc:postgresql:dbserver")
  .option("dbtable", "schema.tablename")
  .option("user", "username")
  .option("password", "password")
  .save()

jdbcDF2.write
  .jdbc("jdbc:postgresql:dbserver", "schema.tablename", connectionProperties)

// Specifying create table column data types on write
jdbcDF.write
  .option("createTableColumnTypes", "name CHAR(64), comments VARCHAR(1024)")
  .jdbc("jdbc:postgresql:dbserver", "schema.tablename", connectionProperties)
  • java
// Note: JDBC loading and saving can be achieved via either the load/save or jdbc methods
// Loading data from a JDBC source
Dataset<Row> jdbcDF = spark.read()
  .format("jdbc")
  .option("url", "jdbc:postgresql:dbserver")
  .option("dbtable", "schema.tablename")
  .option("user", "username")
  .option("password", "password")
  .load();

Properties connectionProperties = new Properties();
connectionProperties.put("user", "username");
connectionProperties.put("password", "password");
Dataset<Row> jdbcDF2 = spark.read()
  .jdbc("jdbc:postgresql:dbserver", "schema.tablename", connectionProperties);

// Saving data to a JDBC source
jdbcDF.write()
  .format("jdbc")
  .option("url", "jdbc:postgresql:dbserver")
  .option("dbtable", "schema.tablename")
  .option("user", "username")
  .option("password", "password")
  .save();

jdbcDF2.write()
  .jdbc("jdbc:postgresql:dbserver", "schema.tablename", connectionProperties);

// Specifying create table column data types on write
jdbcDF.write()
  .option("createTableColumnTypes", "name CHAR(64), comments VARCHAR(1024)")
  .jdbc("jdbc:postgresql:dbserver", "schema.tablename", connectionProperties);
  • python
# Note: JDBC loading and saving can be achieved via either the load/save or jdbc methods
# Loading data from a JDBC source
jdbcDF = spark.read \
    .format("jdbc") \
    .option("url", "jdbc:postgresql:dbserver") \
    .option("dbtable", "schema.tablename") \
    .option("user", "username") \
    .option("password", "password") \
    .load()

jdbcDF2 = spark.read \
    .jdbc("jdbc:postgresql:dbserver", "schema.tablename",
          properties={"user": "username", "password": "password"})

# Saving data to a JDBC source
jdbcDF.write \
    .format("jdbc") \
    .option("url", "jdbc:postgresql:dbserver") \
    .option("dbtable", "schema.tablename") \
    .option("user", "username") \
    .option("password", "password") \
    .save()

jdbcDF2.write \
    .jdbc("jdbc:postgresql:dbserver", "schema.tablename",
          properties={"user": "username", "password": "password"})

# Specifying create table column data types on write
jdbcDF.write \
    .option("createTableColumnTypes", "name CHAR(64), comments VARCHAR(1024)") \
    .jdbc("jdbc:postgresql:dbserver", "schema.tablename",
          properties={"user": "username", "password": "password"})
  • sql
CREATE TEMPORARY VIEW jdbcTable
USING org.apache.spark.sql.jdbc
OPTIONS (
  url "jdbc:postgresql:dbserver",
  dbtable "schema.tablename",
  user 'username',
  password 'password'
)

INSERT INTO TABLE jdbcTable
SELECT * FROM resultTable
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末状共,一起剝皮案震驚了整個(gè)濱河市套耕,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌口芍,老刑警劉巖箍铲,帶你破解...
    沈念sama閱讀 211,376評論 6 491
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異鬓椭,居然都是意外死亡颠猴,警方通過查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 90,126評論 2 385
  • 文/潘曉璐 我一進(jìn)店門小染,熙熙樓的掌柜王于貴愁眉苦臉地迎上來翘瓮,“玉大人,你說我怎么就攤上這事裤翩∽手眩” “怎么了?”我有些...
    開封第一講書人閱讀 156,966評論 0 347
  • 文/不壞的土叔 我叫張陵踊赠,是天一觀的道長呵扛。 經(jīng)常有香客問我,道長筐带,這世上最難降的妖魔是什么今穿? 我笑而不...
    開封第一講書人閱讀 56,432評論 1 283
  • 正文 為了忘掉前任,我火速辦了婚禮伦籍,結(jié)果婚禮上蓝晒,老公的妹妹穿的比我還像新娘。我一直安慰自己帖鸦,他們只是感情好芝薇,可當(dāng)我...
    茶點(diǎn)故事閱讀 65,519評論 6 385
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著作儿,像睡著了一般洛二。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上攻锰,一...
    開封第一講書人閱讀 49,792評論 1 290
  • 那天晾嘶,我揣著相機(jī)與錄音,去河邊找鬼口注。 笑死变擒,一個(gè)胖子當(dāng)著我的面吹牛君珠,可吹牛的內(nèi)容都是我干的寝志。 我是一名探鬼主播,決...
    沈念sama閱讀 38,933評論 3 406
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼材部!你這毒婦竟也來了毫缆?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 37,701評論 0 266
  • 序言:老撾萬榮一對情侶失蹤乐导,失蹤者是張志新(化名)和其女友劉穎苦丁,沒想到半個(gè)月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體物臂,經(jīng)...
    沈念sama閱讀 44,143評論 1 303
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡旺拉,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 36,488評論 2 327
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了棵磷。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片蛾狗。...
    茶點(diǎn)故事閱讀 38,626評論 1 340
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖仪媒,靈堂內(nèi)的尸體忽然破棺而出沉桌,到底是詐尸還是另有隱情,我是刑警寧澤算吩,帶...
    沈念sama閱讀 34,292評論 4 329
  • 正文 年R本政府宣布留凭,位于F島的核電站,受9級特大地震影響偎巢,放射性物質(zhì)發(fā)生泄漏蔼夜。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 39,896評論 3 313
  • 文/蒙蒙 一艘狭、第九天 我趴在偏房一處隱蔽的房頂上張望挎扰。 院中可真熱鬧,春花似錦巢音、人聲如沸遵倦。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,742評論 0 21
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽梧躺。三九已至,卻和暖如春傲绣,著一層夾襖步出監(jiān)牢的瞬間掠哥,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 31,977評論 1 265
  • 我被黑心中介騙來泰國打工秃诵, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留续搀,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 46,324評論 2 360
  • 正文 我出身青樓菠净,卻偏偏與公主長得像禁舷,于是被迫代替她去往敵國和親彪杉。 傳聞我的和親對象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 43,494評論 2 348

推薦閱讀更多精彩內(nèi)容