10X單細(xì)胞(10X空間轉(zhuǎn)錄組)空間相關(guān)性分析和cellphoneDB與NicheNet聯(lián)合進(jìn)行細(xì)胞通訊分析

hello,大家好肋坚,隨著10X單細(xì)胞、10X空間轉(zhuǎn)錄組如火如荼的進(jìn)行中肃廓,我們的分析內(nèi)容和手段也要進(jìn)入深水區(qū)了智厌,很多深入和細(xì)節(jié)的分析需要我們格外注意了,今天我們來(lái)分享兩個(gè)非常好的點(diǎn)亿昏,希望大家能夠深入分析自己的數(shù)據(jù),發(fā)大文章档礁。

首先第一點(diǎn)角钩,Spatial Correlation Analysis,其實(shí)這個(gè)談過(guò)好幾次了呻澜,文章在10X空間轉(zhuǎn)錄組之共定位分析(細(xì)胞類(lèi)型和配受體基因)递礼,10X空間轉(zhuǎn)錄組之基因的空間表達(dá)模式10X空間轉(zhuǎn)錄組(10X單細(xì)胞)之論細(xì)胞通訊空間分布的重要性等羹幸。這一次我們?cè)谖恼?a target="_blank">Multimodal Analysis of Composition and Spatial Architecture in Human Squamous Cell Carcinoma分享一些很經(jīng)典和值得注意的方法脊髓,大家一定要重點(diǎn)關(guān)注。

We reasoned that genes expressed in adjacent spots in ST were potentially meaningful and that a simple correlation of genes across spots could overlook this adjacency structure within the data(在ST的相鄰斑點(diǎn)中表達(dá)的基因具有潛在的意義栅受,并且各個(gè)斑點(diǎn)之間的基因簡(jiǎn)單相關(guān)可能會(huì)忽略數(shù)據(jù)中的這種鄰接結(jié)構(gòu)将硝,這個(gè)地方已經(jīng)多次強(qiáng)調(diào)過(guò),希望引起大家的重視 ). Thus, we calculated average normalized gene expression(均一化的數(shù)據(jù)) across a ‘‘sliding window’’ of spot groups consisting of a central spot surrounding by its N nearest neighbors(臨近spot), where N = 4 in the original ST data and N = 6 in Visium samples for each spot in the tissue, generating a matrix of genes by average spot group expression across all spots(重點(diǎn)關(guān)注屏镊,臨近spot平均之后產(chǎn)生新的矩陣). This matrix can be correlated with any ‘‘a(chǎn)nchoring’’ gene of interest (FOXP3 in our case) by calculating pairwise Pearson correlations of the FOXP3 expression vector across all spots and the gene average group expression vectors across spots(這個(gè)地方體現(xiàn)其準(zhǔn)備的價(jià)值). These values reflect if the expression of a gene in the area surrounding the anchoring gene is correlated with the expression of the anchoring gene and termed ‘‘spatial gene correlation’’ with FOXP3 .(空間基因的相關(guān)性)依疼。

關(guān)于空間基因的相關(guān)性分析,多次的強(qiáng)調(diào)過(guò)而芥,因?yàn)榻M織有一個(gè)有序的“實(shí)體”律罢,組織上的細(xì)胞類(lèi)型,基因表達(dá)的分布都有其深刻的生物學(xué)意義棍丐,一定要重點(diǎn)關(guān)注误辑。

第二個(gè)分析點(diǎn),cellphoneDB與NicheNet聯(lián)合進(jìn)行細(xì)胞通訊分析歌逢,這個(gè)方法相當(dāng)經(jīng)典

Ligand-receptor interactions were inferred using a similar approach as previously described (Vento-Tormo et al., 2018)(這個(gè)地方就是cellphoneDB的分析結(jié)果). We first calculated average expression of ligand and receptor pairs across cell type pairs in normalized scRNA-seq data from an aggregate of the seven patient tumor samples containing TSK cells(老套路). We only considered genes with more than 10% of cells demonstrating expression within each cell type considered. We calculated a null distribution for average ligand-receptor by shuffling cell identities in the aggregated data and re-calculating ligand-receptor average pair expression across 1,000 permutations of randomized cell identities. The P value was the number of randomized pairs exceeding the observed data. For bar plots shown in Figures 6B and 6C, in addition to including only ligand-receptor pairs with p < 0.001, we further thresholded individual ligand or receptor expression with a cutoff of average expression > 0.2 (in log space). The 0.2 cutoff was determined by calculating the average log gene expression distribution for all genes across each cell type, and genes expressed at or above this cutoff corresponded with the top 12% or higher of expressed genes for each cell type.(這個(gè)地方就是cellphoneDB的一般流程)巾钉。

For NicheNet analysis, we derived TME cell type signatures by taking the top 100 differentially expressed genes in cells isolated from tumors or normal skin, including B cells, endothelial cells, fibroblasts, Langerhans cells, plasmacytoid DCs, CD1C DCs, CLEC9A DCs, T cells, NK cells, macrophages, and MDSCs(熟悉這個(gè)軟件的同學(xué)應(yīng)該不陌生,需要輸入靶基因列表秘案,但是這個(gè)靶基因的選擇很有講究睛琳,不是簡(jiǎn)單的cluster之間的差異盒蟆。)。 We input these signatures into NicheNet to derive a union set of predicted ligands modulating tumor-specific TME cell type signatures(依據(jù)靶基因預(yù)測(cè)配體). For ligands predicting TSK modulation, we input the top 100 TSK-differentially expressed genes . The top 15% of predicted ligands (配體的挑選)by regulatory potential that also demonstrated significance in our scRNA-seq ligand-receptor interaction analysis .we used the FindAllMarkers function in Seurat to generate average logFC values per cell type compared to other cell types from the scRNAseq data.(千萬(wàn)注意)师骗。

For ligand-receptor spatial transcriptomic proximity analysis, the average value of all ligand-receptor pairs across the leading edge from the eight sections from patients 2, 4, and 10 were calculated first by averaging the ligand and receptor expression among each leading edge spot and its 4-6 nearest neighbors (depending on ST technology), and then taking the average values of all of these groups of five or seven spots across the leading edge. This calculation for each ligand-receptor pair was then performed on 1,000 randomized permutations of spot identities while preserving total number of spots per replicate section to generate a null distribution per patient. P value was calculated by number of randomized permutation calculations that exceeded the true average.(邊界分析)历等。

簡(jiǎn)單總結(jié)一下,cellphoneDB分析配受體辟癌,依據(jù)感興趣的靶基因寒屯,通過(guò)NicheNet分析,挑選高活性的配體黍少,然后再?gòu)腸ellphoneDB里面匹配顯著的配受體對(duì)寡夹,從而達(dá)到分析目的,說(shuō)起來(lái)很簡(jiǎn)單厂置,但真正的操作菩掏,很需要智慧和能力。

生活很好昵济,等你超越

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
禁止轉(zhuǎn)載智绸,如需轉(zhuǎn)載請(qǐng)通過(guò)簡(jiǎn)信或評(píng)論聯(lián)系作者。
  • 序言:七十年代末访忿,一起剝皮案震驚了整個(gè)濱河市瞧栗,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌海铆,老刑警劉巖迹恐,帶你破解...
    沈念sama閱讀 206,013評(píng)論 6 481
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場(chǎng)離奇詭異卧斟,居然都是意外死亡殴边,警方通過(guò)查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 88,205評(píng)論 2 382
  • 文/潘曉璐 我一進(jìn)店門(mén)珍语,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái)找都,“玉大人,你說(shuō)我怎么就攤上這事廊酣∧艹埽” “怎么了?”我有些...
    開(kāi)封第一講書(shū)人閱讀 152,370評(píng)論 0 342
  • 文/不壞的土叔 我叫張陵亡驰,是天一觀的道長(zhǎng)晓猛。 經(jīng)常有香客問(wèn)我,道長(zhǎng)凡辱,這世上最難降的妖魔是什么戒职? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 55,168評(píng)論 1 278
  • 正文 為了忘掉前任,我火速辦了婚禮透乾,結(jié)果婚禮上洪燥,老公的妹妹穿的比我還像新娘磕秤。我一直安慰自己,他們只是感情好捧韵,可當(dāng)我...
    茶點(diǎn)故事閱讀 64,153評(píng)論 5 371
  • 文/花漫 我一把揭開(kāi)白布市咆。 她就那樣靜靜地躺著,像睡著了一般再来。 火紅的嫁衣襯著肌膚如雪蒙兰。 梳的紋絲不亂的頭發(fā)上,一...
    開(kāi)封第一講書(shū)人閱讀 48,954評(píng)論 1 283
  • 那天芒篷,我揣著相機(jī)與錄音搜变,去河邊找鬼。 笑死针炉,一個(gè)胖子當(dāng)著我的面吹牛挠他,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播篡帕,決...
    沈念sama閱讀 38,271評(píng)論 3 399
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼殖侵,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來(lái)了赂苗?” 一聲冷哼從身側(cè)響起愉耙,我...
    開(kāi)封第一講書(shū)人閱讀 36,916評(píng)論 0 259
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤贮尉,失蹤者是張志新(化名)和其女友劉穎拌滋,沒(méi)想到半個(gè)月后,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體猜谚,經(jīng)...
    沈念sama閱讀 43,382評(píng)論 1 300
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡败砂,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 35,877評(píng)論 2 323
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了魏铅。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片昌犹。...
    茶點(diǎn)故事閱讀 37,989評(píng)論 1 333
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖览芳,靈堂內(nèi)的尸體忽然破棺而出斜姥,到底是詐尸還是另有隱情,我是刑警寧澤沧竟,帶...
    沈念sama閱讀 33,624評(píng)論 4 322
  • 正文 年R本政府宣布铸敏,位于F島的核電站,受9級(jí)特大地震影響悟泵,放射性物質(zhì)發(fā)生泄漏杈笔。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 39,209評(píng)論 3 307
  • 文/蒙蒙 一糕非、第九天 我趴在偏房一處隱蔽的房頂上張望蒙具。 院中可真熱鬧球榆,春花似錦、人聲如沸禁筏。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 30,199評(píng)論 0 19
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)融师。三九已至右钾,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間旱爆,已是汗流浹背舀射。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 31,418評(píng)論 1 260
  • 我被黑心中介騙來(lái)泰國(guó)打工, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留怀伦,地道東北人脆烟。 一個(gè)月前我還...
    沈念sama閱讀 45,401評(píng)論 2 352
  • 正文 我出身青樓,卻偏偏與公主長(zhǎng)得像房待,于是被迫代替她去往敵國(guó)和親邢羔。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 42,700評(píng)論 2 345

推薦閱讀更多精彩內(nèi)容