返回函數(shù)
函數(shù)作為返回值
高階函數(shù)除了可以接受函數(shù)作為參數(shù)外耗绿,還可以把函數(shù)作為結(jié)果值返回。
我們來(lái)實(shí)現(xiàn)一個(gè)可變參數(shù)的求和。通常情況下鹅心,求和的函數(shù)是這樣定義的:
def calc_sum(*args):
ax = 0
for n in args:
ax = ax + n
return ax
但是,如果不需要立刻求和纺荧,而是在后面的代碼中旭愧,根據(jù)需要再計(jì)算怎么辦颅筋?可以不返回求和的結(jié)果,而是返回求和的函數(shù)输枯!
def lazy_sum(*args):
def sum():
ax = 0
for n in args:
ax = ax + n
return ax
return sum
當(dāng)我們調(diào)用lazy_sum()
時(shí)议泵,返回的并不是求和的結(jié)果,而是求和函數(shù):
>>>f = lazy_sum(1, 2, 3, 4)
>>>f
<function sum at 0x10452f668>
調(diào)用函數(shù)f
時(shí)桃熄,才真正計(jì)算求和的結(jié)果:
>>>f()
10
在這個(gè)例子中先口,我們?cè)诤瘮?shù)lazy_sum
中又定義了函數(shù)sum
,內(nèi)部函數(shù)sum
可以引用外部函數(shù)lazy_sum
的參數(shù)和局部變量瞳收,當(dāng)lazy_sum
返回函數(shù)sum
時(shí)碉京,相關(guān)參數(shù)和變量都保存在返回的函數(shù)中,這種稱為閉包(Closure)
的程序結(jié)構(gòu)擁有極大的威力螟深。
請(qǐng)?jiān)僮⒁庖幌滦持妫?dāng)我們調(diào)用lazy_sum()
時(shí),每次調(diào)用都會(huì)返回一個(gè)新的函數(shù)界弧,即使傳入相同的參數(shù):
>>>f1 = lazy_sum(1, 3, 5, 7, 9)
>>>f2 = lazy_sum(1, 3, 5, 7, 9)
>>>f1 == f2
False
f1()
和f()
的調(diào)用結(jié)果互不影響卧惜。
閉包
注意到返回的函數(shù)在其定義內(nèi)部引用了局部變量args
,所以夹纫,當(dāng)一個(gè)函數(shù)返回了一個(gè)函數(shù)后咽瓷,其內(nèi)部的局部變量還被新函數(shù)引用,所以舰讹,閉包用起來(lái)簡(jiǎn)單茅姜,實(shí)現(xiàn)起來(lái)可不容易。
另一個(gè)需要注意的問(wèn)題月匣,返回的函數(shù)并沒(méi)有立刻執(zhí)行钻洒,而是知道調(diào)用了f()
才執(zhí)行。我們來(lái)看一個(gè)例子:
def count()
fs = []
for i in range(1, 4):
def f():
return i * i
fs.append(f)
return fs
f1, f2, f3 = count()
在上面的例子中锄开,每次循環(huán)素标,都創(chuàng)建了一個(gè)新的函數(shù),然后萍悴,把創(chuàng)建的3個(gè)函數(shù)都返回了头遭。
你可能認(rèn)為調(diào)用f1()
, f2()
, f3()
結(jié)果應(yīng)該是1
, 4
, 9
,但實(shí)際結(jié)果是:
>>>f1()
9
>>>f2()
9
>>>f3()
9
全部都是9
!原因就在于返回的函數(shù)引用了變量i
,但它并非立刻執(zhí)行癣诱。等到3個(gè)函數(shù)都返回時(shí)计维,他們引用的變量i
已經(jīng)變成了3, 因此撕予,最終結(jié)果為9
返回閉包時(shí)要牢記的一點(diǎn)就是:返回函數(shù)不要引用任何循環(huán)變量鲫惶,或者后續(xù)會(huì)發(fā)生變化的變量。
如果一定要引用循環(huán)變量怎么辦实抡?方法就是再創(chuàng)建一個(gè)函數(shù)欠母,用該函數(shù)的參數(shù)綁定循環(huán)變量當(dāng)前的值欢策,無(wú)論循環(huán)變量后續(xù)如何更改,已綁定到函數(shù)參數(shù)的值不變:
def count():
fs = []
for i in range(1, 4):
def f(j):
def g():
return j*j
return g
fs.append(f(j))
return fs
>>>f1, f2, f3 = count()
>>>f1()
1
>>>f2()
4
缺點(diǎn)是代碼較長(zhǎng)赏淌,可利用lambda函數(shù)縮短代碼猬腰。
def count():
fs = []
for i in range(1, 4):
def f(j):
return lambda:j*j
fs.append(f(i))
return fs
f1, f2, f3 = count()