Given a binary tree, return the bottom-up level order traversal of its nodes' values. (ie, from left to right, level by level from leaf to root).
For example:
Given binary tree [3,9,20,null,null,15,7],
3
/ \
9 20
/ \
15 7
return its bottom-up level order traversal as:
[
[15,7],
[9,20],
[3]
]
Solution1:BFS
思路:BFS + 每行cur_result 插入LinkedList<list>到頭
Time Complexity: O(N) Space Complexity: O(N)
Solution2:pre-order DFS with level [LinkedList]
思路:DFS過程中不同level的結果list 保存到 對應LinkedList<list> result[level]中。
時間復雜度是O(N^2): 因為當result是LinkedList時硕淑,雖然擴大創(chuàng)建時的result.add(0, new LinkedList<Integer>())是O(1)元践,但get到result[level]位置需要O(n)帝簇;但如果result用ArrayList時get雖然get到result[level]位置是O(1)澈蚌,但擴大創(chuàng)建時的result.add(0, new LinkedList<Integer>())may cost的移動是O(n)未蝌;
Time Complexity: O(N^2) Space Complexity: O(N) 遞歸緩存
則可以Solution3 提前用O(N)求得max_height光督,先建立好ArrayList的result_list焕蹄,這樣就不需要擴大創(chuàng)建(may cost 移動O(n))
Solution3:pre-order DFS with level [prebuild-arraylist]
思路:提前求得max_height并創(chuàng)建好ArrayList<list> result, DFS過程中不同level的結果list 保存到 對應 result[level]中
Time Complexity: O(N) Space Complexity: O(N)
Solution1 Code:
class Solution {
public List<List<Integer>> levelOrderBottom(TreeNode root) {
Queue<TreeNode> queue = new LinkedList<TreeNode>();
List<List<Integer>> result = new LinkedList<List<Integer>>();
if(root == null) return result;
queue.offer(root);
while(!queue.isEmpty()) {
int num_on_level = queue.size();
List<Integer> cur_result = new LinkedList<Integer>();
for(int i = 0; i < num_on_level; i++) {
TreeNode cur = queue.poll();
if(cur.left != null) queue.add(cur.left);
if(cur.right != null) queue.add(cur.right);
cur_result.add(cur.val);
}
result.add(0, cur_result);
}
return result;
}
}
Solution2 Code:
class Solution2 {
public List<List<Integer>> levelOrderBottom(TreeNode root) {
List<List<Integer>> result = new LinkedList<List<Integer>>();
dfs(result, root, 0);
return result;
}
public void dfs(List<List<Integer>> result, TreeNode root, int level) {
if (root == null) return;
if (level == result.size()) {
result.add(0, new LinkedList<Integer>());
}
result.get(result.size() - level - 1).add(root.val);
dfs(result, root.left, level+1);
dfs(result, root.right, level+1);
}
}
Solution3 Code:
class Solution3 {
public List<List<Integer>> levelOrderBottom(TreeNode root) {
int total_levels = maxHeight(root);
System.out.println("total_levels: " + total_levels);
List<List<Integer>> result = new ArrayList<List<Integer>>();
for(int i = 0; i < total_levels; i++) {
result.add(new LinkedList<Integer>());
}
dfs(result, root, 0);
return result;
}
public void dfs(List<List<Integer>> result, TreeNode root, int level) {
if (root == null) return;
System.out.println("level: " + level);
result.get(result.size() - level - 1).add(root.val);
dfs(result, root.left, level + 1);
dfs(result, root.right, level + 1);
}
private int maxHeight(TreeNode root) {
if(root == null) return 0;
return 1 + Math.max(maxHeight(root.left), maxHeight(root.right));
}
}