CellRanger網(wǎng)頁(yè)報(bào)告淺藍(lán)色部分

下面的內(nèi)容是從10X cellranger 官網(wǎng)里面看到的關(guān)于cellranger3.0以后的版本網(wǎng)頁(yè)報(bào)告中的淺藍(lán)色部分如何計(jì)算得到的講解。

Calling Cell Barcodes

Cell Ranger 3.0 introduces an improved cell-calling algorithm that is better able to identify populations of low RNA content cells, especially when low RNA content cells are mixed into a population of high RNA content cells. For example, tumor samples often contain large tumor cells mixed with smaller tumor infiltrating lymphocytes (TIL) and researchers may be particularly interested in the TIL population. The new algorithm is based on the EmptyDrops method (Lun et al., 2018).

The algorithm has two key steps:

  1. It uses a cutoff based on total UMI counts of each barcode to identify cells. This step identifies the primary mode of high RNA content cells.(有效細(xì)胞鑒定)
  2. Then the algorithm uses the RNA profile of each remaining barcode to determine if it is an “empty" or a cell containing partition. This second step captures low RNA content cells whose total UMI counts may be similar to empty GEMs.(空細(xì)胞[背景]還是細(xì)胞分區(qū)鑒定)

In the first step, the original Cell Ranger cell calling algorithm is used to identify the primary mode of high RNA content cells, using a cutoff based on the total UMI count for each barcode. Cell Ranger takes as input the expected number of recovered cells, N (see --expect-cells). Let m be the 99th percentile of the top N barcodes by total UMI counts. All barcodes whose total UMI counts exceed m/10 are called as cells in the first pass.(有效細(xì)胞得到的方法)
In the second step, a set of barcodes with low UMI counts that likely represent ‘empty’ GEM partitions is selected. A model of the RNA profile of selected barcodes is created. This model, called the background model, is a multinomial distribution over genes. It uses Simple Good-Turing smoothing to provide a non-zero model estimate for genes that were not observed in the representative empty GEM set.
Finally, the RNA profile of each barcode not called as a cell in the first step is compared to the background model. Barcodes whose RNA profile strongly disagrees with the background model are added to the set of positive cell calls. This second step identifies cells that are clearly distinguishable from the profile of empty GEMs, even though they may have much lower RNA content than the largest cells in the experiment.

image.png

參考鏈接:https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/algorithms/overview#cell_calling

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末次酌,一起剝皮案震驚了整個(gè)濱河市擅笔,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌汹押,老刑警劉巖矿筝,帶你破解...
    沈念sama閱讀 206,126評(píng)論 6 481
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場(chǎng)離奇詭異棚贾,居然都是意外死亡窖维,警方通過查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 88,254評(píng)論 2 382
  • 文/潘曉璐 我一進(jìn)店門妙痹,熙熙樓的掌柜王于貴愁眉苦臉地迎上來铸史,“玉大人,你說我怎么就攤上這事细诸∨嫣埃” “怎么了?”我有些...
    開封第一講書人閱讀 152,445評(píng)論 0 341
  • 文/不壞的土叔 我叫張陵震贵,是天一觀的道長(zhǎng)利赋。 經(jīng)常有香客問我,道長(zhǎng)猩系,這世上最難降的妖魔是什么媚送? 我笑而不...
    開封第一講書人閱讀 55,185評(píng)論 1 278
  • 正文 為了忘掉前任,我火速辦了婚禮寇甸,結(jié)果婚禮上塘偎,老公的妹妹穿的比我還像新娘疗涉。我一直安慰自己,他們只是感情好吟秩,可當(dāng)我...
    茶點(diǎn)故事閱讀 64,178評(píng)論 5 371
  • 文/花漫 我一把揭開白布咱扣。 她就那樣靜靜地躺著,像睡著了一般涵防。 火紅的嫁衣襯著肌膚如雪闹伪。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 48,970評(píng)論 1 284
  • 那天壮池,我揣著相機(jī)與錄音偏瓤,去河邊找鬼。 笑死椰憋,一個(gè)胖子當(dāng)著我的面吹牛厅克,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播橙依,決...
    沈念sama閱讀 38,276評(píng)論 3 399
  • 文/蒼蘭香墨 我猛地睜開眼证舟,長(zhǎng)吁一口氣:“原來是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來了窗骑?” 一聲冷哼從身側(cè)響起褪储,我...
    開封第一講書人閱讀 36,927評(píng)論 0 259
  • 序言:老撾萬榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎慧域,沒想到半個(gè)月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體浪读,經(jīng)...
    沈念sama閱讀 43,400評(píng)論 1 300
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡昔榴,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 35,883評(píng)論 2 323
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了碘橘。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片互订。...
    茶點(diǎn)故事閱讀 37,997評(píng)論 1 333
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖痘拆,靈堂內(nèi)的尸體忽然破棺而出仰禽,到底是詐尸還是另有隱情,我是刑警寧澤纺蛆,帶...
    沈念sama閱讀 33,646評(píng)論 4 322
  • 正文 年R本政府宣布吐葵,位于F島的核電站,受9級(jí)特大地震影響桥氏,放射性物質(zhì)發(fā)生泄漏温峭。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 39,213評(píng)論 3 307
  • 文/蒙蒙 一字支、第九天 我趴在偏房一處隱蔽的房頂上張望凤藏。 院中可真熱鬧奸忽,春花似錦、人聲如沸揖庄。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,204評(píng)論 0 19
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)蹄梢。三九已至疙筹,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間检号,已是汗流浹背腌歉。 一陣腳步聲響...
    開封第一講書人閱讀 31,423評(píng)論 1 260
  • 我被黑心中介騙來泰國(guó)打工, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留齐苛,地道東北人翘盖。 一個(gè)月前我還...
    沈念sama閱讀 45,423評(píng)論 2 352
  • 正文 我出身青樓,卻偏偏與公主長(zhǎng)得像凹蜂,于是被迫代替她去往敵國(guó)和親馍驯。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 42,722評(píng)論 2 345