航空發(fā)動(dòng)機(jī)壽命預(yù)測(cè)

航空發(fā)動(dòng)機(jī)壽命預(yù)測(cè)

該數(shù)據(jù)集的挑戰(zhàn)在于卖词,數(shù)據(jù)來自50或60米的氣象塔的數(shù)據(jù)稚瘾。 每個(gè)塔都有多個(gè)風(fēng)速計(jì)昌屉,一個(gè)風(fēng)向標(biāo)和一個(gè)溫度傳感器考赛。 每個(gè)傳感器在10分鐘內(nèi)測(cè)量數(shù)據(jù)并報(bào)告10分鐘內(nèi)的平均值休里,標(biāo) 準(zhǔn)偏差限佩,最小值和最大值逛揩。 通常情況下季稳,最高兩級(jí)有一對(duì)風(fēng)速計(jì)(例如60米高的59米和49米)沪猴,然后是30米和/或10米的單個(gè)或配對(duì)風(fēng)速計(jì)辐啄。

a)訓(xùn)練數(shù)據(jù)集
提供的數(shù)據(jù)文件中有兩個(gè)結(jié)構(gòu)采章,第一個(gè)是“Train_EngineRun”。這包含結(jié)構(gòu)內(nèi)的260個(gè)發(fā)動(dòng)機(jī)壶辜。在每個(gè)結(jié)構(gòu)中悯舟,該引擎的生命周期數(shù)據(jù),從新引擎直到退役砸民。數(shù)據(jù)包含24列抵怎,每行對(duì)應(yīng)一個(gè)給定的航班。每次飛行數(shù)據(jù)都采集自六種飛行狀態(tài)中的一種岭参,飛行狀態(tài)標(biāo)簽也有提供反惕。“Variable_List”的結(jié)構(gòu)包含對(duì)應(yīng)于24列的傳感器名稱演侯。每個(gè)發(fā)動(dòng)機(jī)的行數(shù)(行程)都不相同姿染,因?yàn)橐恍┌l(fā)動(dòng)機(jī)的壽命比其他發(fā)動(dòng)機(jī)短或長(zhǎng)。

b)測(cè)試數(shù)據(jù)集
測(cè)試數(shù)據(jù)文件以相同的方式配置秒际,但每個(gè)引擎單元只會(huì)有一些降級(jí)悬赏,并且還有額外的航班,直到它應(yīng)該退役娄徊。其目標(biāo)是為每臺(tái)發(fā)動(dòng)機(jī)確定剩余壽命(航班數(shù)量)闽颇。測(cè)試數(shù)據(jù)集中有100個(gè)引擎,因此所有100個(gè)引擎都應(yīng)該有一個(gè)壽命估算嵌莉。

數(shù)據(jù)文件已上傳到我的下載:
數(shù)據(jù)文件

數(shù)據(jù)集來源:工業(yè)大數(shù)據(jù)產(chǎn)業(yè)創(chuàng)新平臺(tái)
需要登錄注冊(cè)后到數(shù)據(jù)集頁面下載

該平臺(tái)收錄了多種行業(yè)場(chǎng)景进萄,包括加工制造、軌道交通锐峭、能源電力中鼠、半導(dǎo)體等行業(yè),從不同層級(jí)收錄了包括部件級(jí)沿癞、設(shè)備級(jí)援雇、產(chǎn)線級(jí)的數(shù)據(jù)。

簡(jiǎn)單思路如下:

  1. 將訓(xùn)練數(shù)據(jù)和標(biāo)簽連接起來
  2. 訓(xùn)練集與測(cè)試集共同進(jìn)行歸一化
  3. 特征選擇椎扬,篩選調(diào)不重要的特征
  4. 將svr惫搏、神經(jīng)網(wǎng)絡(luò)、嶺回歸蚕涤、lgb等模型融合在一起筐赔,提高算法準(zhǔn)確率

優(yōu)化方法:

  • 使用時(shí)間序列模型LSTM試試
  • 特征工程部分多多分析與優(yōu)化、觀察訓(xùn)練集與測(cè)試集是否在同一分布
  • 了解航空發(fā)動(dòng)機(jī)行業(yè)背景知識(shí)揖铜,或許可以加入一些其他特征去優(yōu)化

訓(xùn)練和預(yù)測(cè)代碼1:

# -*- coding: utf-8 -*-
import os

import lightgbm
import numpy as np
import pandas as pd
import xgboost
from keras.layers import Dense
from keras.models import Sequential
from keras.wrappers.scikit_learn import KerasRegressor
from sklearn.base import BaseEstimator, TransformerMixin, RegressorMixin, clone
from sklearn.kernel_ridge import KernelRidge
from sklearn.linear_model import ElasticNet, Lasso, LinearRegression
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import KFold, cross_val_score
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import MinMaxScaler
from sklearn.svm import SVR

def pdReadCsv(file, sep):
    try:
        data = pd.read_csv(file, sep=sep,encoding='utf-8',error_bad_lines=False,engine='python')
        return data
    except:
        data = pd.read_csv(file,sep=sep,encoding='gbk',error_bad_lines=False,engine='python')
        return data

os.chdir(r'E:\項(xiàng)目文件\航空發(fā)動(dòng)機(jī)壽命預(yù)測(cè)\data\\')
src = r'E:\項(xiàng)目文件\航空發(fā)動(dòng)機(jī)壽命預(yù)測(cè)\\'

seed = 2018


# Stacking
class StackingAveragedModels(BaseEstimator, RegressorMixin, TransformerMixin):
    def __init__(self, base_models, meta_model, n_folds=5):
        self.base_models = base_models
        self.meta_model = meta_model
        self.n_folds = n_folds

    # 我們?cè)俅螖M合原始模型的克隆數(shù)據(jù)
    def fit(self, X, y):
        self.base_models_ = [list() for x in self.base_models]
        self.meta_model_ = clone(self.meta_model)
        kfold = KFold(n_splits=self.n_folds, shuffle=True)

        # 訓(xùn)練克隆的基礎(chǔ)模型茴丰,然后創(chuàng)建非折疊預(yù)測(cè)
        # 培養(yǎng)克隆元模型所需的
        out_of_fold_predictions = np.zeros((X.shape[0], len(self.base_models)))
        for i, clf in enumerate(self.base_models):
            for train_index, holdout_index in kfold.split(X, y):
                instance = clone(clf)
                self.base_models_[i].append(instance)
                instance.fit(X[train_index], y[train_index])
                y_pred = instance.predict(X[holdout_index])
                out_of_fold_predictions[holdout_index, i] = y_pred

        # 現(xiàn)在使用不可折疊的預(yù)測(cè)來訓(xùn)練克隆的元模型
        print(out_of_fold_predictions.shape)
        self.meta_model_.fit(out_of_fold_predictions, y)
        return self

    def predict(self, X):
        meta_features = np.column_stack([
            np.column_stack([model.predict(X) for model in base_models]).mean(axis=1)
            for base_models in self.base_models_])
        return self.meta_model_.predict(meta_features)


# 簡(jiǎn)單模型融合
class AveragingModels(BaseEstimator, RegressorMixin, TransformerMixin):
    def __init__(self, models):
        self.models = models

    # 遍歷所有模型
    def fit(self, X, y):
        self.models_ = [clone(x) for x in self.models]

        for model in self.models_:
            model.fit(X, y)

        return self

    # 預(yù)估,并對(duì)預(yù)估結(jié)果值做average
    def predict(self, X):
        predictions = np.column_stack([
            model.predict(X) for model in self.models_
        ])
        return np.mean(predictions, axis=1)


def build_nn():
    model = Sequential()
    model.add(Dense(units=128, activation='linear', input_dim=18))
    model.add(Dense(units=32, activation='linear'))
    model.add(Dense(units=8, activation='linear'))
    model.add(Dense(units=1, activation='linear'))
    model.compile(loss='mse', optimizer='adam')
    return model


def build_model():
    svr = make_pipeline(SVR(kernel='linear'))
    line = make_pipeline(LinearRegression())
    lasso = make_pipeline(Lasso(alpha=0.0005, random_state=1))
    ENet = make_pipeline(ElasticNet(alpha=0.0005, l1_ratio=.9, random_state=3))
    KRR1 = KernelRidge(alpha=0.6, kernel='polynomial', degree=2, coef0=2.5)
    # KRR1 = LinearSVR(C=2)
    KRR2 = KernelRidge(alpha=1.5, kernel='linear', degree=2, coef0=2.5)
    lgbm = lightgbm.LGBMRegressor(learning_rate=0.01, n_estimators=500, num_leaves=31)
    # lgbm = ExtraTreesRegressor(criterion='mse', n_estimators=500, max_depth=38)
    xgb = xgboost.XGBRegressor(booster='gbtree', colsample_bytree=0.8, gamma=0.1,
                               learning_rate=0.02, max_depth=5,
                               n_estimators=500, min_child_weight=0.8,
                               reg_alpha=0, reg_lambda=1, subsample=0.8,
                               random_state=seed, nthread=2)
    nn = KerasRegressor(build_fn=build_nn, nb_epoch=500, batch_size=32, verbose=2)
    return svr, line, lasso, ENet, KRR1, KRR2, lgbm, xgb, nn


def rmsle_cv(model=None, X_train_head=None, y_train=None):
    n_folds = 5
    kf = KFold(n_folds, shuffle=True, random_state=seed).get_n_splits(X_train_head)
    rmse = -cross_val_score(model, X_train_head, y_train, scoring="neg_mean_squared_error", cv=kf)
    return (rmse)


def main():
    print("Load data from file......")
    file = 'train_label.csv'
    # file = 'download_label.csv'
    test_file = 'test_label.csv'
    X_test = pdReadCsv(test_file, ',').drop(columns=["life"])
    train = pdReadCsv(file, ',')
    X_train, y_train = train.drop(columns=["life"]), train["life"]
    print("X_train shape", X_train.shape)
    print("X_test shape", X_test.shape)
    print("y_train shape", y_train.shape)
    all_data = pd.concat([X_train, X_test])
    print(all_data.shape)
    print("Load done.")
    # 標(biāo)準(zhǔn)化
    from sklearn import preprocessing
    scaler = MinMaxScaler(feature_range=(0, 1))
    all_data = pd.DataFrame(scaler.fit_transform(all_data), columns=all_data.columns)
    print("Scale done.")
    scaled = pd.DataFrame(preprocessing.scale(all_data), columns=all_data.columns)
    X_train = scaled.loc[0:len(X_train) - 1]
    X_test = scaled.loc[len(X_train):]
    # 特征選擇
    from sklearn.feature_selection import SelectKBest
    from sklearn.feature_selection import f_regression
    all_data = pd.concat([X_train, X_test])
    # 獲取效果最好的前18個(gè)特征
    X_scored = SelectKBest(score_func=f_regression, k='all').fit(X_train, y_train)
    feature_scoring = pd.DataFrame({
        'feature': X_train.columns,
        'score': X_scored.scores_
    })
    head_feature_num = 18
    feat_scored_headnum = feature_scoring.sort_values('score', ascending=False).head(head_feature_num)['feature']
    X_train_head = X_train[X_train.columns[X_train.columns.isin(feat_scored_headnum)]]
    X_test_head = X_test[X_test.columns[X_test.columns.isin(feat_scored_headnum)]]
    print(X_train_head.shape)
    print(y_train.shape)
    print(X_test_head.shape)
    print("Start training......")
    svr, line, lasso, ENet, KRR1, KRR2, lgbm, xgb, nn = build_model()
    score = rmsle_cv(svr, X_train_head, y_train)
    print("SVR rmse: {:.4f} 標(biāo)準(zhǔn)差: {:.4f}\n".format(score.mean(), score.std()))
    svr.fit(X_train_head, y_train)
    score = rmsle_cv(line, X_train_head, y_train)
    print("Line rmse: {:.4f} 標(biāo)準(zhǔn)差: {:.4f}\n".format(score.mean(), score.std()))
    score = rmsle_cv(lasso, X_train_head, y_train)
    print("Lasso rmse: {:.4f} 標(biāo)準(zhǔn)差: {:.4f}\n".format(score.mean(), score.std()))
    score = rmsle_cv(ENet, X_train_head, y_train)
    print("ElasticNet rmse: {:.4f} 標(biāo)準(zhǔn)差: {:.4f}\n".format(score.mean(), score.std()))
    # =============================================================================
    score = rmsle_cv(KRR1, X_train_head, y_train)
    print("Kernel Ridge1 rmse: {:.4f} 標(biāo)準(zhǔn)差: {:.4f}\n".format(score.mean(), score.std()))
    score = rmsle_cv(KRR2, X_train_head, y_train)
    print("Kernel Ridge2 rmse: {:.4f} 標(biāo)準(zhǔn)差: {:.4f}\n".format(score.mean(), score.std()))
    KRR2.fit(X_train_head, y_train)
    # =============================================================================
    head_feature_num = 22
    feat_scored_headnum = feature_scoring.sort_values('score', ascending=False).head(head_feature_num)['feature']
    X_train_head3 = X_train[X_train.columns[X_train.columns.isin(feat_scored_headnum)]]
    score = rmsle_cv(xgb, X_train_head3, y_train)
    print("Xgboost rmse: {:.4f} 標(biāo)準(zhǔn)差: {:.4f}\n".format(score.mean(), score.std()))
    xgb.fit(X_train_head, y_train)
    # =============================================================================
    head_feature_num = 22
    feat_scored_headnum = feature_scoring.sort_values('score', ascending=False).head(head_feature_num)['feature']
    X_train_head4 = X_train[X_train.columns[X_train.columns.isin(feat_scored_headnum)]]
    score = rmsle_cv(lgbm, X_train_head4, y_train)
    print("LGBM 得分: {:.4f} ({:.4f})\n".format(score.mean(), score.std()))
    lgbm.fit(X_train_head, y_train)
    # =============================================================================
    head_feature_num = 18
    feat_scored_headnum = feature_scoring.sort_values('score', ascending=False).head(head_feature_num)['feature']
    X_train_head5 = X_train[X_train.columns[X_train.columns.isin(feat_scored_headnum)]]
    score = rmsle_cv(nn, X_train_head5, y_train)
    print("NN 得分: {:.4f} ({:.4f})\n".format(score.mean(), score.std()))
    nn.fit(X_train_head, y_train)
    # =============================================================================
    averaged_models = AveragingModels(models=(svr, KRR2, lgbm, nn))
    score = rmsle_cv(averaged_models, X_train_head, y_train)
    print("對(duì)基模型集成后的得分: {:.4f} ({:.4f})\n".format(score.mean(), score.std()))
    averaged_models.fit(X_train_head, y_train)
    stacking_models = StackingAveragedModels(base_models=(svr, KRR2, lgbm, nn), meta_model=xgb)
    stacking_models.fit(X_train_head.values, y_train.values)
    stacked_train_pred = stacking_models.predict(X_train_head)
    score = mean_squared_error(y_train.values, stacked_train_pred)
    print("Stacking Averaged models predict score: {:.4f}".format(score))


main()

訓(xùn)練和預(yù)測(cè)代碼2:

#!/usr/bin/env Python
# coding=utf-8
import warnings

from sklearn.decomposition import PCA
from sklearn.feature_selection import SelectKBest, mutual_info_regression
from sklearn.model_selection import train_test_split

from Aero_engine_life.data_model import get_train, build_model_lgb, build_model_etr, build_model_rf, write_mse, \
    score_model

warnings.filterwarnings("ignore", "(?s).*MATPLOTLIBDATA.*", category=UserWarning)
import numpy as np

import pandas as pd
from sklearn.metrics import mean_squared_error

np.random.seed(2020)


for k in [20]:
    print(k)
    X_data, Y_data = get_train()
    X_data = SelectKBest(mutual_info_regression, k=k).fit_transform(X_data, Y_data)
    pca = PCA(n_components=k)
    X_data = pca.fit_transform(X_data)
    x_train, x_val, y_train, y_val = train_test_split(X_data, Y_data, test_size=0.02, random_state=20)
    model_lgb = build_model_lgb(x_train, y_train)
    val_lgb = model_lgb.predict(x_val)
    model_etr = build_model_etr(x_train, y_train)
    val_etr = model_etr.predict(x_val)
    model_rf = build_model_rf(x_train, y_train)
    val_rf = model_rf.predict(x_val)
    # Starking 第一層
    train_etr_pred = model_etr.predict(x_train)
    print('etr訓(xùn)練集,mse:', mean_squared_error(y_train, train_etr_pred))
    write_mse('etr', '訓(xùn)練集', mean_squared_error(y_train, train_etr_pred))
    train_lgb_pred = model_lgb.predict(x_train)
    print('lgb訓(xùn)練集,mse:', mean_squared_error(y_train, train_lgb_pred))
    write_mse('lgb', '訓(xùn)練集', mean_squared_error(y_train, train_lgb_pred))
    train_rf_pred = model_rf.predict(x_train)
    print('rf訓(xùn)練集,mse:', mean_squared_error(y_train, train_rf_pred))
    write_mse('rf', '訓(xùn)練集', mean_squared_error(y_train, train_rf_pred))

    Stacking_X_train = pd.DataFrame()
    Stacking_X_train['Method_1'] = train_rf_pred
    Stacking_X_train['Method_2'] = train_lgb_pred
    Stacking_X_train['Method_3'] = train_etr_pred

    Stacking_X_val = pd.DataFrame()
    Stacking_X_val['Method_1'] = val_rf
    Stacking_X_val['Method_2'] = val_lgb
    Stacking_X_val['Method_3'] = val_etr

    # 第二層
    model_Stacking = build_model_etr(Stacking_X_train, y_train)

    train_pre_Stacking = model_Stacking.predict(Stacking_X_train)
    score_model(Stacking_X_train, y_train, train_pre_Stacking, model_Stacking, '訓(xùn)練集')
    val_pre_Stacking = model_Stacking.predict(Stacking_X_val)
    score_model(Stacking_X_val, y_val, val_pre_Stacking, model_Stacking, '驗(yàn)證集')

模型文件:

import os

from sklearn.metrics import mean_absolute_error, mean_squared_error
from lightgbm import LGBMRegressor
from sklearn.ensemble import RandomForestRegressor, ExtraTreesRegressor
from sklearn.model_selection import GridSearchCV

from utils.read_write import writeOneCsv, pdReadCsv

os.chdir(r'E:\項(xiàng)目文件\航空發(fā)動(dòng)機(jī)壽命預(yù)測(cè)\data\\')
src = r'E:\項(xiàng)目文件\航空發(fā)動(dòng)機(jī)壽命預(yù)測(cè)\\'


def get_train():
    file = 'train_label.csv'
    # file = 'download_label.csv'
    # file = 'test_label.csv'
    train = pdReadCsv(file, ',')
    return train.values[:, 3:-1], train.values[:, -1:].ravel()


def build_model_rf(x_train, y_train):
    estimator = RandomForestRegressor(criterion='mse')
    param_grid = {
        'max_depth': range(33, 35, 9),
        'n_estimators': range(73, 77, 9),
    }
    model = GridSearchCV(estimator, param_grid, cv=3)
    model.fit(x_train, y_train)
    print('rf')
    print(model.best_params_)
    writeParams('rf', model.best_params_)
    return model


def build_model_etr(x_train, y_train):
    # 極端隨機(jī)森林回歸   n_estimators 即ExtraTreesRegressor最大的決策樹個(gè)數(shù)
    estimator = ExtraTreesRegressor(criterion='mse')
    param_grid = {
        'max_depth': range(33, 39, 9),
        'n_estimators': range(96, 99, 9),
    }
    model = GridSearchCV(estimator, param_grid)
    model.fit(x_train, y_train)
    print('etr')
    print(model.best_params_)
    writeParams('etr', model.best_params_)
    return model


def build_model_lgb(x_train, y_train):
    estimator = LGBMRegressor()
    param_grid = {
        'learning_rate': [0.1],
        'n_estimators': range(77, 78, 9),
        'num_leaves': range(59, 66, 9)
    }
    gbm = GridSearchCV(estimator, param_grid)
    gbm.fit(x_train, y_train.ravel())
    print('lgb')
    print(gbm.best_params_)
    writeParams('lgb', gbm.best_params_)
    return gbm


def scatter_line(y_val, y_pre):
    import matplotlib.pyplot as plt
    xx = range(0, len(y_val))
    plt.scatter(xx, y_val, color="red", label="Sample Point", linewidth=3)
    plt.plot(xx, y_pre, color="orange", label="Fitting Line", linewidth=2)
    plt.legend()
    plt.show()


def score_model(train, test, predict, model, data_type):
    score = model.score(train, test)
    print(data_type + ",R^2,", round(score, 6))
    writeOneCsv(['staking', data_type, 'R^2', round(score, 6)], src + '調(diào)參記錄.csv')
    mae = mean_absolute_error(test, predict)
    print(data_type + ',MAE,', mae)
    writeOneCsv(['staking', data_type, 'MAE', mae], src + '調(diào)參記錄.csv')
    mse = mean_squared_error(test, predict)
    print(data_type + ",MSE,", mse)
    writeOneCsv(['staking', data_type, 'MSE', mse], src + '調(diào)參記錄.csv')


def writeParams(model, best):
    if model == 'lgb':
        writeOneCsv([model, best['num_leaves'], best['n_estimators'], best['learning_rate']], src + '調(diào)參記錄.csv')
    else:
        writeOneCsv([model, best['max_depth'], best['n_estimators'], 0], src + '調(diào)參記錄.csv')


def write_mse(model, data_type, mse):
    writeOneCsv([model, data_type, 'mse', mse], src + '調(diào)參記錄.csv')

如果你是去平臺(tái)下的原始數(shù)據(jù)就要經(jīng)過數(shù)據(jù)處理

import os

import pandas as pd

from utils.read_write import pdReadCsv

os.chdir(r'E:\項(xiàng)目文件\航空發(fā)動(dòng)機(jī)壽命預(yù)測(cè)\data\\')
src = r'E:\項(xiàng)目文件\航空發(fā)動(dòng)機(jī)壽命預(yù)測(cè)\\'


def join_data():
    file = 'Dataset_Aero_engine_life_prediction_train_2020_09_05.csv'
    train = pdReadCsv(file, ',')
    label_file = 'Dataset_Aero_engine_life_prediction_label_2020_09_05.csv'
    label = pdReadCsv(label_file, ',')
    download_file = 'Dataset_Aero_engine_life_prediction_download_2020_09_05.csv'
    download = pdReadCsv(download_file, ',')
    test_file = 'Dataset_Aero_engine_life_prediction_test_2020_09_05.csv'
    test = pdReadCsv(test_file, ',')
    train_label = pd.merge(train, label, on='Number')
    train_label.to_csv('train_label.csv')
    download_label = pd.merge(download, label, on='Number')
    download_label.to_csv('download_label.csv')
    test_label = pd.merge(test, label, on='Number')
    test_label.to_csv('test_label.csv')


join_data()

歡迎大家多多交流工業(yè)大數(shù)據(jù)創(chuàng)新應(yīng)用

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市贿肩,隨后出現(xiàn)的幾起案子峦椰,更是在濱河造成了極大的恐慌,老刑警劉巖汰规,帶你破解...
    沈念sama閱讀 206,126評(píng)論 6 481
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件汤功,死亡現(xiàn)場(chǎng)離奇詭異,居然都是意外死亡溜哮,警方通過查閱死者的電腦和手機(jī)滔金,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 88,254評(píng)論 2 382
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來茂嗓,“玉大人鹦蠕,你說我怎么就攤上這事≡谂祝” “怎么了?”我有些...
    開封第一講書人閱讀 152,445評(píng)論 0 341
  • 文/不壞的土叔 我叫張陵萧恕,是天一觀的道長(zhǎng)刚梭。 經(jīng)常有香客問我,道長(zhǎng)票唆,這世上最難降的妖魔是什么朴读? 我笑而不...
    開封第一講書人閱讀 55,185評(píng)論 1 278
  • 正文 為了忘掉前任,我火速辦了婚禮走趋,結(jié)果婚禮上衅金,老公的妹妹穿的比我還像新娘。我一直安慰自己簿煌,他們只是感情好氮唯,可當(dāng)我...
    茶點(diǎn)故事閱讀 64,178評(píng)論 5 371
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著姨伟,像睡著了一般惩琉。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上夺荒,一...
    開封第一講書人閱讀 48,970評(píng)論 1 284
  • 那天瞒渠,我揣著相機(jī)與錄音,去河邊找鬼技扼。 笑死伍玖,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的剿吻。 我是一名探鬼主播窍箍,決...
    沈念sama閱讀 38,276評(píng)論 3 399
  • 文/蒼蘭香墨 我猛地睜開眼,長(zhǎng)吁一口氣:“原來是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來了仔燕?” 一聲冷哼從身側(cè)響起造垛,我...
    開封第一講書人閱讀 36,927評(píng)論 0 259
  • 序言:老撾萬榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎晰搀,沒想到半個(gè)月后五辽,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 43,400評(píng)論 1 300
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡外恕,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 35,883評(píng)論 2 323
  • 正文 我和宋清朗相戀三年杆逗,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片鳞疲。...
    茶點(diǎn)故事閱讀 37,997評(píng)論 1 333
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡罪郊,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出尚洽,到底是詐尸還是另有隱情悔橄,我是刑警寧澤,帶...
    沈念sama閱讀 33,646評(píng)論 4 322
  • 正文 年R本政府宣布腺毫,位于F島的核電站癣疟,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏潮酒。R本人自食惡果不足惜睛挚,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 39,213評(píng)論 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望急黎。 院中可真熱鬧扎狱,春花似錦、人聲如沸勃教。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,204評(píng)論 0 19
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽荣回。三九已至遭贸,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間心软,已是汗流浹背壕吹。 一陣腳步聲響...
    開封第一講書人閱讀 31,423評(píng)論 1 260
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留删铃,地道東北人耳贬。 一個(gè)月前我還...
    沈念sama閱讀 45,423評(píng)論 2 352
  • 正文 我出身青樓,卻偏偏與公主長(zhǎng)得像猎唁,于是被迫代替她去往敵國和親咒劲。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 42,722評(píng)論 2 345

推薦閱讀更多精彩內(nèi)容