玩一下kmeans簿晓,調(diào)戲以下國足,順便預(yù)測一下18世界杯冠軍千埃,18-7-15 23:00世界杯
物以類聚憔儿,人以群分,選亞洲15支球隊
data = {"zhongguo":[50,50,50,40],
"riben":[28,9,29,12],
"hanguo":[17,15,27,26],
"yilang":[25,40,28,18],
"shate":[28,40,50,25],
"yilake":[50,50,40,40],
"kataer":[50,40,40,40],
"alianqiu":[50,40,50,40],
"wuzibiekesitan":[40,40,40,40],
"taiguo":[50,50,50,40],
"yuenan":[50,50,50,50],
"aman":[50,50,40,50],
"balin":[40,40,50,50],
"chaoxian":[40,32,50,50],
"yinni":[50,50,50,50]}
依次選2006年放可,2010年谒臼,2014年朝刊,2018年世界杯的數(shù)據(jù)作為聚類樣本,打進(jìn)世界杯的得分用排名衡量蜈缤,預(yù)選賽小組未出線的給50拾氓,預(yù)選賽十強的給40,澳大利亞沒統(tǒng)計底哥,18年的排名是估計的咙鞍,雖然11點是冠亞軍決賽,理論上其他隊伍排名已經(jīng)定了趾徽,但是我不會续滋,這樣算,得分越多的越low孵奶。
k選3疲酌,初始中心選中國,日本了袁,沙特徐勃,先計算每一條數(shù)據(jù)到三個中心點的歐氏距離,并將其歸為最近點那一類早像,處理完所有數(shù)據(jù)后僻肖,計算每個類的中心點,更新聚類中心卢鹦,重新以上步驟臀脏,知道聚類中心不再變化,代碼:
import numpy as np
def name2indexf(names):
name2index = {}
for index, name in enumerate(names):
name2index[name] = index
return name2index
def cacul_eudist(vec1, vec2):
assert len(vec1) == len(vec2)
dist = np.linalg.norm(vec1 - vec2)
return dist
if __name__ == "__main__":
data = {"zhongguo":[50,50,50,40],
"riben":[28,9,29,12],
"hanguo":[17,15,27,26],
"yilang":[25,40,28,18],
"shate":[28,40,50,25],
"yilake":[50,50,40,40],
"kataer":[50,40,40,40],
"alianqiu":[50,40,50,40],
"wuzibiekesitan":[40,40,40,40],
"taiguo":[50,50,50,40],
"yuenan":[50,50,50,50],
"aman":[50,50,40,50],
"balin":[40,40,50,50],
"chaoxian":[40,32,50,50],
"yinni":[50,50,50,50]}
data_array = np.zeros(shape=(len(data.keys()),4))
name2index = name2indexf(data.keys())
for name in data.keys():
index = name2index[name]
data_array[index] = np.array(data[name])
k_center = np.array([data_array[0],data_array[1],data_array[4]])
k_center_with_near = {}
# ------cacul center and it near-------
epoch = 0
while True:
for index, item in enumerate(k_center):
k_center_with_near[index] = []
# ----------choice nearest for each data---------
for index in range(len(data.keys())):
data_item = data_array[index]
near = 0
dist_min = 100000
for i in range(len(k_center)):
dist = cacul_eudist(data_item, k_center[i])
if dist_min > dist:
dist_min = dist
near = i
k_center_with_near[near].append(index)
# ------recacul center---------------
end_tag = True
for center_near_index in k_center_with_near.keys():
contry_index = k_center_with_near[center_near_index]
center_near_data = []
for item in contry_index:
center_near_data.append(data_array[item])
center_near_data = np.array(center_near_data)
new_center = np.mean(center_near_data, axis=0)
if not (k_center[center_near_index] == new_center).all():
end_tag = False
k_center[center_near_index] = new_center
print("epoch:",epoch, "center:", k_center)
epoch += 1
test = data.keys()
if end_tag:
for item in k_center_with_near.keys():
print("classv{} include".format(item), [list(data.keys())[n] for n in (k_center_with_near[item])])
break
結(jié)果:
classv0 include ['zhongguo', 'yilake', 'kataer', 'alianqiu', 'wuzibiekesitan', 'taiguo', 'yuenan', 'aman', 'balin', 'chaoxian', 'yinni']
classv1 include ['riben', 'hanguo']
classv2 include ['yilang', 'shate']
這樣算冀自,中國隊在亞洲只能算3流球隊
預(yù)測克羅地亞冠軍揉稚,雖然實力比法國弱一些,但是不要低估對冠軍渴望的心