以下三個庫來實現(xiàn)Pandas讀寫MySQL數(shù)據(jù)庫:
- pandas
- sqlalchemy
- pymysql
SQLAlchemy
SQLAlchemy模塊提供了create_engine()函數(shù)用來初始化數(shù)據(jù)庫連接状婶,SQLAlchemy用一個字符串表示連接信息:
'數(shù)據(jù)庫類型+數(shù)據(jù)庫驅(qū)動名稱://用戶名:口令@機器地址:端口號/數(shù)據(jù)庫名'
Pandas
pandas模塊提供了read_sql_query()函數(shù)實現(xiàn)了對數(shù)據(jù)庫的查詢款违,to_sql()函數(shù)實現(xiàn)了對數(shù)據(jù)庫的寫入,并不需要實現(xiàn)新建MySQL數(shù)據(jù)表章喉。
sqlalchemy模塊實現(xiàn)了與不同數(shù)據(jù)庫的連接,而pymysql模塊則使得Python能夠操作MySQL數(shù)據(jù)庫馒过。
# -*- coding: utf-8 -*-
# 導(dǎo)入必要模塊
import pandas as pd
from sqlalchemy import create_engine
# 初始化數(shù)據(jù)庫連接唧瘾,使用pymysql模塊
# MySQL的用戶:root, 密碼:123456, 端口:3306,數(shù)據(jù)庫:mydb
engine = create_engine('mysql+pymysql://root:123456@localhost:3306/mydb')
# 查詢語句,選出employee表中的所有數(shù)據(jù)
sql = '''
select * from employee;
'''
# read_sql_query的兩個參數(shù): sql語句娶眷, 數(shù)據(jù)庫連接
df = pd.read_sql_query(sql, engine)
# 輸出employee表的查詢結(jié)果
print(df)
# 新建pandas中的DataFrame, 只有id,num兩列
df = pd.DataFrame({'id':[1,2,3,4],'num':[12,34,56,89]})
# 將新建的DataFrame儲存為MySQL中的數(shù)據(jù)表,不儲存index列
df.to_sql('mydf', engine, index= False)
print('Read from and write to Mysql table successfully!')
將CSV文件寫入到MySQL中
# -*- coding: utf-8 -*-
# 導(dǎo)入必要模塊
import pandas as pd
from sqlalchemy import create_engine
# 初始化數(shù)據(jù)庫連接啸臀,使用pymysql模塊
engine = create_engine('mysql+pymysql://root:123456@localhost:3306/mydb')
# 讀取本地CSV文件
df = pd.read_csv("E://mpg.csv", sep=',')
# 將新建的DataFrame儲存為MySQL中的數(shù)據(jù)表届宠,不儲存index列
df.to_sql('mpg', engine, index= False)
print("Write to MySQL successfully!")