本文是基于objc4-818來進(jìn)行編寫的
_objc_init
void _objc_init(void)
{
static bool initialized = false;
if (initialized) return;
initialized = true;
// fixme defer initialization until an objc-using image is found?
environ_init();
tls_init();
static_init();
runtime_init();
exception_init();
#if __OBJC2__
cache_t::init();
#endif
_imp_implementationWithBlock_init();
_dyld_objc_notify_register(&map_images, load_images, unmap_image);
#if __OBJC2__
didCallDyldNotifyRegister = true;
#endif
}
-
environ_init()
讀取影響運(yùn)行時(shí)的環(huán)境變量靠汁。 -
tls_init()
關(guān)于線程key的綁定 - 比如每線程數(shù)據(jù)的析構(gòu)函數(shù) -
static_init()
運(yùn)行C++
靜態(tài)構(gòu)造函數(shù)诗轻。在dyld
調(diào)用我們的靜態(tài)構(gòu)造函數(shù)之前续扔,libc
會(huì)調(diào)用_objc_init()
,因此我們必須自己做 -
runtime_init()
runtime
運(yùn)行時(shí)環(huán)境初始化 -
exception_init()
初始化libobjc
的異常處理系統(tǒng) -
cache_t::init()
準(zhǔn)備緩存铭若,緩存初始化 -
_imp_implementationWithBlock_init()
啟動(dòng)回調(diào)機(jī)制枫匾。通常這不會(huì)做什么,因?yàn)樗械某跏蓟?br> 是惰性的堵幽,但是對(duì)于某些進(jìn)程狗超,我們會(huì)迫不及待地加載trampolines dylib -
_dyld_objc_notify_register(&map_images, load_images, unmap_image)
dyld
通過map_images
、load_images
和unmap_image
將macho
中的類信息加載到內(nèi)存
朴下,并加載類信息
_dyld_objc_notify_register(&map_images, load_images, unmap_image)
我們知道代碼編譯后會(huì)產(chǎn)生macho
文件努咐,macho
文件中就存儲(chǔ)了所有的符號(hào),程序的運(yùn)行殴胧,就是符號(hào)的調(diào)用結(jié)果渗稍。
代碼 → 編譯 → Macho → 內(nèi)存,我們的程序就能運(yùn)行起來了
-
map_images
管理文件和動(dòng)態(tài)庫中的符號(hào)(class团滥、selector竿屹、category、……
) -
load_images
加載load方法
map_images
這里的map_images
前面加了&
符號(hào)灸姊,是引用類型拱燃,內(nèi)部產(chǎn)生變化,外界會(huì)跟著一起變化
-
map_images
源碼
void
map_images(unsigned count, const char * const paths[],
const struct mach_header * const mhdrs[])
{
mutex_locker_t lock(runtimeLock);
return map_images_nolock(count, paths, mhdrs);
}
-
map_images_nolock
源碼
void
map_images_nolock(unsigned mhCount, const char * const mhPaths[],
const struct mach_header * const mhdrs[])
{
// 省略準(zhǔn)備代碼
// Find all images with Objective-C metadata. 找出images中所有Objective-C元數(shù)據(jù)
hCount = 0;
// Count classes. Size various table based on the total.
int totalClasses = 0; //類的個(gè)數(shù)
int unoptimizedTotalClasses = 0; // 未優(yōu)化的Classes
{
// 省略計(jì)算totalClasses力惯、unoptimizedTotalClasses碗誉、hCount的個(gè)數(shù)的代碼
}
if (hCount > 0) {
// 加載鏡像文件
_read_images(hList, hCount, totalClasses, unoptimizedTotalClasses);
}
firstTime = NO;
// Call image load funcs after everything is set up.調(diào)用鏡像加載功能
for (auto func : loadImageFuncs) {
for (uint32_t i = 0; i < mhCount; i++) {
func(mhdrs[i]);
}
}
}
這部分代碼召嘶,主要做一系列的準(zhǔn)備工作,其目的是找出
hCount
哮缺、totalClasses
弄跌,unoptimizedTotalClasses
為read_image
做準(zhǔn)備。
_read_images
_read_images
主要有以下的幾部分
- 條件控制進(jìn)行的一次加載
- 修復(fù)預(yù)編譯階段的@selector的混亂問題
- 錯(cuò)誤混亂的類處理
- 修復(fù)重映射一些沒有被鏡像文件加載進(jìn)來的類
- 修復(fù)一些消息
- 當(dāng)類里面有協(xié)議時(shí):readProtocol 讀取協(xié)議
- 修復(fù)沒有被加載的協(xié)議
- 分類處理
- 類的加載處理
- 沒有被處理的類尝苇,優(yōu)化那些被侵犯的類
條件控制進(jìn)行的一次加載
if (!doneOnce) { // 這里只會(huì)執(zhí)行一次
doneOnce = YES;
launchTime = YES;
// ……省略各種系統(tǒng)判斷和支持
// namedClasses
// Preoptimized classes don't go in this table.
// 4/3 is NXMapTable's load factor
int namedClassesSize =
(isPreoptimized() ? unoptimizedTotalClasses : totalClasses) * 4 / 3;
gdb_objc_realized_classes =
NXCreateMapTable(NXStrValueMapPrototype, namedClassesSize);
ts.log("IMAGE TIMES: first time tasks");
}
這里doneOnce
只會(huì)進(jìn)來一次铛只,我們可以看到進(jìn)入這個(gè)if條件
之后doneOnce
就被改變?yōu)?code>YES了,然后獲取到namedClasses
的大小茎匠,然后創(chuàng)建NXMapTable
哈希表來快速存儲(chǔ)格仲,根據(jù)官方注釋創(chuàng)建的哈希表的大小為namedClassesSize
的4/3
倍。
-
gdb_objc_realized_classes
查看gdb_objc_realized_classes
的源碼得知诵冒,gdb_objc_realized_classes
的真正類型是NXMapTable
凯肋,根據(jù)注釋,我們知道gdb_objc_realized_classes
實(shí)際上是不存在與dyld
共享緩存的命名列表中汽馋,無論其是否實(shí)現(xiàn)侮东,這個(gè)列表排除了懶加載類,這個(gè)列表的類必須通過getClass
來獲取
// This is a misnomer: gdb_objc_realized_classes is actually a list of
// named classes not in the dyld shared cache, whether realized or not.
// This list excludes lazily named classes, which have to be looked up
// using a getClass hook.
NXMapTable *gdb_objc_realized_classes; // exported for debuggers in objc-gdb.h
修復(fù)預(yù)編譯階段的@selector的混亂問題
// Fix up @selector references
static size_t UnfixedSelectors;
{
mutex_locker_t lock(selLock);
for (EACH_HEADER) {
if (hi->hasPreoptimizedSelectors()) continue;
bool isBundle = hi->isBundle();
//通過_getObjc2SelectorRefs拿到Mach-O中的靜態(tài)段__objc_selrefs
SEL *sels = _getObjc2SelectorRefs(hi, &count);
UnfixedSelectors += count;
for (i = 0; i < count; i++) {
const char *name = sel_cname(sels[i]);
//注冊(cè)sel操作豹芯,即將sel添加到
SEL sel = sel_registerNameNoLock(name, isBundle);
//當(dāng)sel與sels[i]地址不一致時(shí)悄雅,需要調(diào)整為一致的
if (sels[i] != sel) {
sels[i] = sel;
}
}
}
}
ts.log("IMAGE TIMES: fix up selector references");
主要是通過通過_getObjc2SelectorRefs
拿到Mach_O
中的靜態(tài)段__objc_selrefs
,遍歷列表調(diào)用sel_registerNameNoLock
將SEL
添加到namedSelectors
哈希表中
-
_getObjc2SelectorRefs
_getObjc2*
铁蹈,從Mach_O
中讀取所需信息
// function name content type section name
GETSECT(_getObjc2SelectorRefs, SEL, "__objc_selrefs");
GETSECT(_getObjc2MessageRefs, message_ref_t, "__objc_msgrefs");
GETSECT(_getObjc2ClassRefs, Class, "__objc_classrefs");
GETSECT(_getObjc2SuperRefs, Class, "__objc_superrefs");
GETSECT(_getObjc2ClassList, classref_t const, "__objc_classlist");
GETSECT(_getObjc2NonlazyClassList, classref_t const, "__objc_nlclslist");
GETSECT(_getObjc2CategoryList, category_t * const, "__objc_catlist");
GETSECT(_getObjc2CategoryList2, category_t * const, "__objc_catlist2");
GETSECT(_getObjc2NonlazyCategoryList, category_t * const, "__objc_nlcatlist");
GETSECT(_getObjc2ProtocolList, protocol_t * const, "__objc_protolist");
GETSECT(_getObjc2ProtocolRefs, protocol_t *, "__objc_protorefs");
GETSECT(getLibobjcInitializers, UnsignedInitializer, "__objc_init_func");
-
sel_registerNameNoLock && __sel_registerName
通過sel_registerNameNoLock
→__sel_registerName
探索宽闲,如果!name
則返回為0的SEL,search_builtins
→_dyld_get_objc_selector
握牧,然后去_dyld中查找容诬,如果找到了,則返回result(SEL)
沿腰,沒有則做inset
览徒,即將sel
插入namedSelectors
哈希表中
SEL sel_registerNameNoLock(const char *name, bool copy) {
return __sel_registerName(name, 0, copy); // NO lock, maybe copy
}
static SEL __sel_registerName(const char *name, bool shouldLock, bool copy)
{
SEL result = 0;
if (shouldLock) selLock.assertUnlocked();
else selLock.assertLocked();
if (!name) return (SEL)0;
result = search_builtins(name);
if (result) return result;
conditional_mutex_locker_t lock(selLock, shouldLock);
auto it = namedSelectors.get().insert(name);
if (it.second) {
// No match. Insert.
*it.first = (const char *)sel_alloc(name, copy);
}
return (SEL)*it.first;
}
錯(cuò)誤混亂的類處理
//3、錯(cuò)誤混亂的類處理
// Discover classes. Fix up unresolved future classes. Mark bundle classes.
bool hasDyldRoots = dyld_shared_cache_some_image_overridden();
//讀取類:readClass
for (EACH_HEADER) {
if (! mustReadClasses(hi, hasDyldRoots)) {
// Image is sufficiently optimized that we need not call readClass()
continue;
}
//從編譯后的類列表中取出所有類颂龙,即從Mach-O中獲取靜態(tài)段__objc_classlist习蓬,是一個(gè)classref_t類型的指針
classref_t const *classlist = _getObjc2ClassList(hi, &count);
bool headerIsBundle = hi->isBundle();
bool headerIsPreoptimized = hi->hasPreoptimizedClasses();
for (i = 0; i < count; i++) {
Class cls = (Class)classlist[i];//此時(shí)獲取的cls只是一個(gè)地址
Class newCls = readClass(cls, headerIsBundle, headerIsPreoptimized); //讀取類,經(jīng)過這步后措嵌,cls獲取的值才是一個(gè)名字
//經(jīng)過調(diào)試躲叼,并未執(zhí)行if里面的流程
//初始化所有懶加載的類需要的內(nèi)存空間,但是懶加載類的數(shù)據(jù)現(xiàn)在是沒有加載到的企巢,連類都沒有初始化
if (newCls != cls && newCls) {
// Class was moved but not deleted. Currently this occurs
// only when the new class resolved a future class.
// Non-lazily realize the class below.
//將非懶加載的類添加到數(shù)組中
resolvedFutureClasses = (Class *)
realloc(resolvedFutureClasses,
(resolvedFutureClassCount+1) * sizeof(Class));
resolvedFutureClasses[resolvedFutureClassCount++] = newCls;
}
}
}
ts.log("IMAGE TIMES: discover classes");
從
Mach_O
中獲取所有的類枫慷,遍歷所有的類,處理錯(cuò)誤混亂的類,從最后的注釋可知流礁,這里處理的都只是非懶加載類
-
cls
這里我們看到了異常熟悉的cls
,但:- 再?zèng)]有經(jīng)過
readClass
之前罗丰,即Class cls = (Class)classlist[i]
時(shí)神帅,這里的cls
只是一個(gè)地址 - 經(jīng)過
readClass
之后,cls
就轉(zhuǎn)變?yōu)橐粋€(gè)類名稱了
- 再?zèng)]有經(jīng)過
修復(fù)重映射一些沒有被鏡像文件加載進(jìn)來的類
// Fix up remapped classes
// Class list and nonlazy class list remain unremapped.
// Class refs and super refs are remapped for message dispatching.
if (!noClassesRemapped()) {
for (EACH_HEADER) {
Class *classrefs = _getObjc2ClassRefs(hi, &count);
for (i = 0; i < count; i++) {
remapClassRef(&classrefs[i]);
}
// fixme why doesn't test future1 catch the absence of this?
classrefs = _getObjc2SuperRefs(hi, &count);
for (i = 0; i < count; i++) {
remapClassRef(&classrefs[i]);
}
}
}
ts.log("IMAGE TIMES: remap classes");
如果有重新映射的類萌抵,分別讀取Mach_O
中__objc_classrefs
和__objc_superrefs
的符號(hào)信息找御,通過remapClass
來達(dá)到修復(fù)和重新映射的目的。
修復(fù)一些消息
主要是通過_getObjc2MessageRefs
獲取Mach-O
的靜態(tài)段 __objc_msgrefs
绍填,并遍歷通過fixupMessageRef
將函數(shù)指針進(jìn)行注冊(cè)霎桅,并fix為新的函數(shù)指針
#if SUPPORT_FIXUP
//修復(fù)一些消息
// Fix up old objc_msgSend_fixup call sites
for (EACH_HEADER) {
// _getObjc2MessageRefs 獲取Mach-O的靜態(tài)段 __objc_msgrefs
message_ref_t *refs = _getObjc2MessageRefs(hi, &count);
if (count == 0) continue;
if (PrintVtables) {
_objc_inform("VTABLES: repairing %zu unsupported vtable dispatch "
"call sites in %s", count, hi->fname());
}
//經(jīng)過調(diào)試,并未執(zhí)行for里面的流程
//遍歷將函數(shù)指針進(jìn)行注冊(cè)讨永,并fix為新的函數(shù)指針
for (i = 0; i < count; i++) {
fixupMessageRef(refs+i);
}
}
ts.log("IMAGE TIMES: fix up objc_msgSend_fixup");
#endif
當(dāng)類里面有協(xié)議時(shí):readProtocol 讀取協(xié)議
//當(dāng)類里面有協(xié)議時(shí):readProtocol 讀取協(xié)議
// Discover protocols. Fix up protocol refs. 發(fā)現(xiàn)協(xié)議滔驶。修正協(xié)議引用
// 遍歷所有協(xié)議列表,并且將協(xié)議列表加載到Protocol的哈希表中
for (EACH_HEADER) {
extern objc_class OBJC_CLASS_$_Protocol;
//cls = Protocol類卿闹,所有協(xié)議和對(duì)象的結(jié)構(gòu)體都類似揭糕,isa都對(duì)應(yīng)Protocol類
Class cls = (Class)&OBJC_CLASS_$_Protocol;
ASSERT(cls);
//獲取protocol哈希表 -- protocol_map
NXMapTable *protocol_map = protocols();
bool isPreoptimized = hi->hasPreoptimizedProtocols();
// Skip reading protocols if this is an image from the shared cache
// and we support roots
// Note, after launch we do need to walk the protocol as the protocol
// in the shared cache is marked with isCanonical() and that may not
// be true if some non-shared cache binary was chosen as the canonical
// definition
if (launchTime && isPreoptimized && cacheSupportsProtocolRoots) {
if (PrintProtocols) {
_objc_inform("PROTOCOLS: Skipping reading protocols in image: %s",
hi->fname());
}
continue;
}
bool isBundle = hi->isBundle();
//通過_getObjc2ProtocolList 獲取到Mach-O中的靜態(tài)段__objc_protolist協(xié)議列表,
//即從編譯器中讀取并初始化protocol
protocol_t * const *protolist = _getObjc2ProtocolList(hi, &count);
for (i = 0; i < count; i++) {
//通過添加protocol到protocol_map哈希表中
readProtocol(protolist[i], cls, protocol_map,
isPreoptimized, isBundle);
}
}
ts.log("IMAGE TIMES: discover protocols");
創(chuàng)建協(xié)議表protocol_map
锻霎,類型為NXMapTable
著角。即NXMapTable *protocol_map = protocols();
,protocols()
的源碼如下
static NXMapTable *protocols(void)
{
static NXMapTable *protocol_map = nil;
runtimeLock.assertLocked();
INIT_ONCE_PTR(protocol_map,
NXCreateMapTable(NXStrValueMapPrototype, 16),
NXFreeMapTable(v) );
return protocol_map;
}
獲取macho
中的協(xié)議列表旋恼,循環(huán)遍歷通過readProtocol
將協(xié)議寫入protocol_map
哈希表
protocol_t * const *protolist = _getObjc2ProtocolList(hi, &count);
for (i = 0; i < count; i++) {
readProtocol(protolist[i], cls, protocol_map,
isPreoptimized, isBundle);
}
修復(fù)沒有被加載的協(xié)議
// Fix up @protocol references
// Preoptimized images may have the right
// answer already but we don't know for sure.
for (EACH_HEADER) {
// At launch time, we know preoptimized image refs are pointing at the
// shared cache definition of a protocol. We can skip the check on
// launch, but have to visit @protocol refs for shared cache images
// loaded later.
if (launchTime && hi->isPreoptimized())
continue;
protocol_t **protolist = _getObjc2ProtocolRefs(hi, &count);
for (i = 0; i < count; i++) {
remapProtocolRef(&protolist[i]);
}
}
ts.log("IMAGE TIMES: fix up @protocol references");
獲取macho
中靜態(tài)段__objc_protorefs
的內(nèi)容吏口,通過remapProtocolRef
來修復(fù)未加載的協(xié)議。
分類的處理
// Discover categories. Only do this after the initial category
// attachment has been done. For categories present at startup,
// discovery is deferred until the first load_images call after
// the call to _dyld_objc_notify_register completes. rdar://problem/53119145
if (didInitialAttachCategories) {
for (EACH_HEADER) {
load_categories_nolock(hi);
}
}
ts.log("IMAGE TIMES: discover categories");
發(fā)現(xiàn)分類冰更。只有在分類的初始化才能這樣做产徊。對(duì)于在啟動(dòng)時(shí)出現(xiàn)的類別,發(fā)現(xiàn)延遲到對(duì)_dyld_objc_notify_register
的調(diào)用完成后的第一次load_images
調(diào)用
類的加載處理
// Category discovery MUST BE Late to avoid potential races
// when other threads call the new category code before
// this thread finishes its fixups.
// +load handled by prepare_load_methods()
// Realize non-lazy classes (for +load methods and static instances)
for (EACH_HEADER) {
classref_t const *classlist = hi->nlclslist(&count);
for (i = 0; i < count; i++) {
Class cls = remapClass(classlist[i]);
if (!cls) continue;
addClassTableEntry(cls);
if (cls->isSwiftStable()) {
if (cls->swiftMetadataInitializer()) {
_objc_fatal("Swift class %s with a metadata initializer "
"is not allowed to be non-lazy",
cls->nameForLogging());
}
// fixme also disallow relocatable classes
// We can't disallow all Swift classes because of
// classes like Swift.__EmptyArrayStorage
}
realizeClassWithoutSwift(cls, nil);
}
}
ts.log("IMAGE TIMES: realize non-lazy classes");
加載非懶加載類
-
classref_t const *classlist = hi->nlclslist(&count)
冬殃,獲取macho
中非懶加載類表 - 通過
remapClass
來判斷當(dāng)前非懶加載類的指針是否已經(jīng)存在- 如果不存在囚痴,則通過
addClassTableEntry
加當(dāng)前非懶加載類插入類表,通過realizeClassWithoutSwift
實(shí)現(xiàn)當(dāng)前的類
- 如果不存在囚痴,則通過
沒有被處理的類审葬,優(yōu)化那些被侵犯的類
// Realize newly-resolved future classes, in case CF manipulates them
if (resolvedFutureClasses) {
for (i = 0; i < resolvedFutureClassCount; i++) {
Class cls = resolvedFutureClasses[i];
if (cls->isSwiftStable()) {
_objc_fatal("Swift class is not allowed to be future");
}
//實(shí)現(xiàn)類
realizeClassWithoutSwift(cls, nil);
cls->setInstancesRequireRawIsaRecursively(false/*inherited*/);
}
free(resolvedFutureClasses);
}
ts.log("IMAGE TIMES: realize future classes");
if (DebugNonFragileIvars) {
//實(shí)現(xiàn)所有類
realizeAllClasses();
}
readClass
讀取類深滚,我們?cè)?strong>混亂類的處理中,通過readClass
涣觉,我們由一個(gè)地址得到了類的名稱痴荐。其源碼如下:
/***********************************************************************
* readClass
* Read a class and metaclass as written by a compiler.
* Returns the new class pointer. This could be:
* - cls
* - nil (cls has a missing weak-linked superclass)
* - something else (space for this class was reserved by a future class)
*
* Note that all work performed by this function is preflighted by
* mustReadClasses(). Do not change this function without updating that one.
*
* Locking: runtimeLock acquired by map_images or objc_readClassPair
**********************************************************************/
Class readClass(Class cls, bool headerIsBundle, bool headerIsPreoptimized)
{
// 獲取類名
const char *mangledName = cls->nonlazyMangledName();
const char *practiseName = "Person";
if (strcmp(mangledName, practiseName) == 0) {
printf("-------- %s", mangledName);
}
// 當(dāng)前類的父類中若有丟失的weak-linked類,則返回nil
if (missingWeakSuperclass(cls)) {
// No superclass (probably weak-linked).
// Disavow any knowledge of this subclass.
if (PrintConnecting) {
_objc_inform("CLASS: IGNORING class '%s' with "
"missing weak-linked superclass",
cls->nameForLogging());
}
addRemappedClass(cls, nil);
cls->setSuperclass(nil);
return nil;
}
cls->fixupBackwardDeployingStableSwift();
// 判斷是不是后期需要處理的類
// 正常情況下官册,不會(huì)走到popFutureNamedClass生兆,因?yàn)檫@是專門針對(duì)未來待處理的類的操作
// 通過斷點(diǎn)調(diào)試,不會(huì)走到if流程里面膝宁,因此也不會(huì)對(duì)ro鸦难、rw進(jìn)行操作
Class replacing = nil;
if (mangledName != nullptr) {
if (Class newCls = popFutureNamedClass(mangledName)) {
// This name was previously allocated as a future class.
// Copy objc_class to future class's struct.
// Preserve future's rw data block.
if (newCls->isAnySwift()) {
_objc_fatal("Can't complete future class request for '%s' "
"because the real class is too big.",
cls->nameForLogging());
}
//讀取class的data根吁,設(shè)置ro、rw
//經(jīng)過調(diào)試合蔽,并不會(huì)走到這里
class_rw_t *rw = newCls->data();
const class_ro_t *old_ro = rw->ro();
memcpy(newCls, cls, sizeof(objc_class));
// Manually set address-discriminated ptrauthed fields
// so that newCls gets the correct signatures.
newCls->setSuperclass(cls->getSuperclass());
newCls->initIsa(cls->getIsa());
rw->set_ro((class_ro_t *)newCls->data());
newCls->setData(rw);
freeIfMutable((char *)old_ro->getName());
free((void *)old_ro);
addRemappedClass(cls, newCls);
replacing = cls;
cls = newCls;
}
}
//判斷是否類是否已經(jīng)加載到內(nèi)存
if (headerIsPreoptimized && !replacing) {
// class list built in shared cache
// fixme strict assert doesn't work because of duplicates
// ASSERT(cls == getClass(name));
ASSERT(mangledName == nullptr || getClassExceptSomeSwift(mangledName));
} else {
if (mangledName) { //some Swift generic classes can lazily generate their names
//加載共享緩存中的類
addNamedClass(cls, mangledName, replacing);
} else {
Class meta = cls->ISA();
const class_ro_t *metaRO = meta->bits.safe_ro();
ASSERT(metaRO->getNonMetaclass() && "Metaclass with lazy name must have a pointer to the corresponding nonmetaclass.");
ASSERT(metaRO->getNonMetaclass() == cls && "Metaclass nonmetaclass pointer must equal the original class.");
}
//插入表击敌,即相當(dāng)于從mach-O文件 讀取到 內(nèi)存 中
addClassTableEntry(cls);
}
// for future reference: shared cache never contains MH_BUNDLEs
if (headerIsBundle) {
cls->data()->flags |= RO_FROM_BUNDLE;
cls->ISA()->data()->flags |= RO_FROM_BUNDLE;
}
return cls;
}
- 通過
cls->nonlazyMangledName()
獲取類名
// Get the class's mangled name, or NULL if the class has a lazy
// name that hasn't been created yet.
const char *nonlazyMangledName() const {
return bits.safe_ro()->getName();
}
從注釋我們知道,這里獲取的是非懶加載類的類名拴事,如果是懶加載類則會(huì)返回NULL
沃斤,這里與之前版本的源碼有所區(qū)別
- 當(dāng)前類的父類中若有丟失的weak-linked類,則返回nil
- 判斷是不是后期需要處理的類刃宵,在正常情況下衡瓶,不會(huì)走到
popFutureNamedClass
,因?yàn)檫@是專門針對(duì)未來待處理的類的操作牲证,也可以通過斷點(diǎn)調(diào)試哮针,可知不會(huì)走到if
流程里面,因此也不會(huì)對(duì)ro
从隆、rw
進(jìn)行操作-
data
是macho
中的數(shù)據(jù)诚撵,并不存在class
內(nèi)存中 -
ro
的賦值是從macho
中的data
強(qiáng)轉(zhuǎn)而來 -
rw
中的ro
是從ro
復(fù)制過去的
-
- 通過
addNamedClass
將當(dāng)前類添加到已經(jīng)創(chuàng)建好的gdb_objc_realized_classes
哈希表,該表用于存放所有類
/***********************************************************************
* addNamedClass 加載共享緩存中的類 插入表
* Adds name => cls to the named non-meta class map. 將name=> cls添加到命名的非元類映射
* Warns about duplicate class names and keeps the old mapping.
* Locking: runtimeLock must be held by the caller
**********************************************************************/
static void addNamedClass(Class cls, const char *name, Class replacing = nil)
{
runtimeLock.assertLocked();
Class old;
if ((old = getClassExceptSomeSwift(name)) && old != replacing) {
inform_duplicate(name, old, cls);
// getMaybeUnrealizedNonMetaClass uses name lookups.
// Classes not found by name lookup must be in the
// secondary meta->nonmeta table.
addNonMetaClass(cls);
} else {
//添加到gdb_objc_realized_classes哈希表
NXMapInsert(gdb_objc_realized_classes, name, cls);
}
ASSERT(!(cls->data()->flags & RO_META));
// wrong: constructed classes are already realized when they get here
// ASSERT(!cls->isRealized());
}
- 通過
addClassTableEntry
键闺,將初始化的類添加到allocatedClasses
表寿烟,allocatedClasses
在_objc_init
中的runtime_init
就創(chuàng)建了。
/***********************************************************************
* addClassTableEntry
* Add a class to the table of all classes. If addMeta is true,
* automatically adds the metaclass of the class as well.
* Locking: runtimeLock must be held by the caller.
**********************************************************************/
static void
addClassTableEntry(Class cls, bool addMeta = true)
{
runtimeLock.assertLocked();
// This class is allowed to be a known class via the shared cache or via
// data segments, but it is not allowed to be in the dynamic table already.
auto &set = objc::allocatedClasses.get();
ASSERT(set.find(cls) == set.end());
if (!isKnownClass(cls))
set.insert(cls);
if (addMeta)
addClassTableEntry(cls->ISA(), false);
}
總結(jié)
所以綜上所述辛燥,readClass
的主要作用就是將macho
中的非懶加載類讀取到內(nèi)存筛武,即插入表中,但是目前的類僅有兩個(gè)信息:地址以及名稱挎塌,而macho
的其中的data
數(shù)據(jù)還未讀取出來
realizeClassWithoutSwift
realizeClassWithoutSwift
中有ro
徘六,rw
的相關(guān)操作,realizeClassWithoutSwift
的作用是實(shí)現(xiàn)類榴都,將類的data加載到內(nèi)存中
1. 讀取data數(shù)據(jù)
// fixme verify class is not in an un-dlopened part of the shared cache?
//讀取class的data()待锈,以及ro/rw創(chuàng)建
auto ro = (const class_ro_t *)cls->data(); //讀取類結(jié)構(gòu)的bits屬性、//ro -- clean memory嘴高,在編譯時(shí)就已經(jīng)確定了內(nèi)存
auto isMeta = ro->flags & RO_META; //判斷元類
if (ro->flags & RO_FUTURE) {
// This was a future class. rw data is already allocated.
rw = cls->data(); //dirty memory 進(jìn)行賦值
ro = cls->data()->ro();
ASSERT(!isMeta);
cls->changeInfo(RW_REALIZED|RW_REALIZING, RW_FUTURE);
} else { //此時(shí)將數(shù)據(jù)讀取進(jìn)來了竿音,也賦值完畢了
// Normal class. Allocate writeable class data.
rw = objc::zalloc<class_rw_t>(); //申請(qǐng)開辟zalloc -- rw
rw->set_ro(ro);//rw中的ro設(shè)置為臨時(shí)變量ro
rw->flags = RW_REALIZED|RW_REALIZING|isMeta;
cls->setData(rw);//將cls的data賦值為rw形式
}
讀取class
的data
數(shù)據(jù),賦值rw
拴驮,ro
-
ro
表示readOnly
春瞬,即只讀,其在編譯時(shí)就已經(jīng)確定了內(nèi)存套啤,包含類名稱宽气、方法、協(xié)議和實(shí)例變量的信息,由于是只讀的萄涯,所以屬于Clean Memory
绪氛,而Clean Memory
是指加載后不會(huì)發(fā)生更改的內(nèi)存 -
rw
表示readWrite
,即可讀可寫
涝影,由于其動(dòng)態(tài)性钞楼,可能會(huì)往類中添加屬性、方法袄琳、添加協(xié)議
,在2020的WWDC
的對(duì)內(nèi)存優(yōu)化
的說明Advancements in the Objective-C runtime - WWDC 2020 - Videos - Apple Developer中燃乍,提到rw
唆樊,其實(shí)在rw
中只有10%的類真正的更改了它們的方法,所以有了rwe
刻蟹,即類的額外信息
逗旁。對(duì)于那些確實(shí)需要額外信息的類,可以分配rwe
擴(kuò)展記錄中的一個(gè)舆瘪,并將其滑入類中供其使用片效。其中rw
就屬于dirty memory
,而dirty memory
是指在進(jìn)程運(yùn)行時(shí)會(huì)發(fā)生更改的內(nèi)存
英古,類結(jié)構(gòu)
一經(jīng)使用
就會(huì)變成ditry memory
淀衣,因?yàn)檫\(yùn)行時(shí)會(huì)向它寫入新數(shù)據(jù),例如創(chuàng)建一個(gè)新的方法緩存召调,并從類中指向它
2. 確定類的繼承鏈膨桥,及isa鏈
-
supercls = realizeClassWithoutSwift(remapClass(cls->getSuperclass()), nil)
確定父類 -
metacls = realizeClassWithoutSwift(remapClass(cls->ISA()), nil)
確定元類
// 調(diào)用realizeClassWithoutSwift查找父類和元類
supercls = realizeClassWithoutSwift(remapClass(cls->getSuperclass()), nil);
metacls = realizeClassWithoutSwift(remapClass(cls->ISA()), nil);
- 在
realizeClassWithoutSwift
的開頭有如下代碼,通過對(duì)查找類是否已實(shí)現(xiàn)的判斷唠叛,來防止無限循環(huán)找下的情況發(fā)生
// 如果沒有找到只嚣,則返回nil
// 如果類以初始化,則返回cls
if (!cls) return nil;
if (cls->isRealized()) {
validateAlreadyRealizedClass(cls);
return cls;
}
- 如果類沒有找到艺沼,則返回
nil
册舞,我們知道即NSObject
的父類是nil
,元類是通過isa
來確定其繼承關(guān)系障般,rootmatecls
的isa
指向的還是自己调鲸,所以這里元類不會(huì)返回nil
- 判斷當(dāng)前的
cls
是否已實(shí)現(xiàn)
// Locking: To prevent concurrent realization, hold runtimeLock.
bool isRealized() const {
return !isStubClass() && (data()->flags & RW_REALIZED);
}
這里我們可以知道,判斷一個(gè)類是否已經(jīng)完成實(shí)現(xiàn)剩拢,其實(shí)就是在看其是否已近完成了
rw
的實(shí)現(xiàn)
- 如果類已實(shí)現(xiàn)线得,驗(yàn)證其實(shí)現(xiàn),并返回該類
static void validateAlreadyRealizedClass(Class cls) {
ASSERT(cls->isRealized());
#if TARGET_OS_OSX
class_rw_t *rw = cls->data();
size_t rwSize = malloc_size(rw);
// Note: this check will need some adjustment if class_rw_t's
// size changes to not match the malloc bucket.
if (rwSize != sizeof(class_rw_t))
_objc_fatal("realized class %p has corrupt data pointer %p", cls, rw);
#endif
}
這里我們?cè)俅悟?yàn)證了判斷類的實(shí)現(xiàn)其實(shí)就是在對(duì)其的
rw
進(jìn)行驗(yàn)證
- 如果沒有實(shí)現(xiàn)徐伐,則會(huì)回到這里的第一步讀取data數(shù)據(jù)
- 完成當(dāng)前需要實(shí)現(xiàn)類的父類及元類的重新映射
// Update superclass and metaclass in case of remapping
// 重新映射并設(shè)置父類和初始化其元類
cls->setSuperclass(supercls);
cls->initClassIsa(metacls);
-
setSuperclass
重新映射父類
void setSuperclass(Class newSuperclass) {
#if ISA_SIGNING_SIGN_MODE == ISA_SIGNING_SIGN_ALL
superclass = (Class)ptrauth_sign_unauthenticated((void *)newSuperclass, ISA_SIGNING_KEY, ptrauth_blend_discriminator(&superclass, ISA_SIGNING_DISCRIMINATOR_CLASS_SUPERCLASS));
#else
superclass = newSuperclass;
#endif
}
-
initClassIsa
給當(dāng)前類設(shè)置元類
- 如果
supercls
存在贯钩,則將cls
加入父類的子類列表中 - 如果
supercls
不存在,則將cls
作為根類
// 將類鏈接到父類的子類列表
// Connect this class to its superclass's subclass lists
if (supercls) {
addSubclass(supercls, cls);
} else {
addRootClass(cls);
}
3. 通過methodizeClass修復(fù)類的方法列表、協(xié)議列表角雷、屬性列表
/***********************************************************************
* methodizeClass
* Fixes up cls's method list, protocol list, and property list.
* Attaches any outstanding categories.
* Locking: runtimeLock must be held by the caller
**********************************************************************/
static void methodizeClass(Class cls, Class previously)
{
runtimeLock.assertLocked();
bool isMeta = cls->isMetaClass();
auto rw = cls->data();
auto ro = rw->ro();
auto rwe = rw->ext();
// Methodizing for the first time
if (PrintConnecting) {
_objc_inform("CLASS: methodizing class '%s' %s",
cls->nameForLogging(), isMeta ? "(meta)" : "");
}
// Install methods and properties that the class implements itself.
method_list_t *list = ro->baseMethods();
if (list) {
prepareMethodLists(cls, &list, 1, YES, isBundleClass(cls), nullptr);
if (rwe) rwe->methods.attachLists(&list, 1);
}
property_list_t *proplist = ro->baseProperties;
if (rwe && proplist) {
rwe->properties.attachLists(&proplist, 1);
}
protocol_list_t *protolist = ro->baseProtocols;
if (rwe && protolist) {
rwe->protocols.attachLists(&protolist, 1);
}
// Root classes get bonus method implementations if they don't have
// them already. These apply before category replacements.
if (cls->isRootMetaclass()) {
// root metaclass
addMethod(cls, @selector(initialize), (IMP)&objc_noop_imp, "", NO);
}
// Attach categories.
if (previously) {
if (isMeta) {
objc::unattachedCategories.attachToClass(cls, previously,
ATTACH_METACLASS);
} else {
// When a class relocates, categories with class methods
// may be registered on the class itself rather than on
// the metaclass. Tell attachToClass to look for those.
objc::unattachedCategories.attachToClass(cls, previously,
ATTACH_CLASS_AND_METACLASS);
}
}
objc::unattachedCategories.attachToClass(cls, cls,
isMeta ? ATTACH_METACLASS : ATTACH_CLASS);
#if DEBUG
// Debug: sanity-check all SELs; log method list contents
for (const auto& meth : rw->methods()) {
if (PrintConnecting) {
_objc_inform("METHOD %c[%s %s]", isMeta ? '+' : '-',
cls->nameForLogging(), sel_getName(meth.name()));
}
ASSERT(sel_registerName(sel_getName(meth.name())) == meth.name());
}
#endif
}
將ro的方法列表加到rw中
- 從ro中獲取到方法列表
// Install methods and properties that the class implements itself.
method_list_t *list = ro->baseMethods();
if (list) {
prepareMethodLists(cls, &list, 1, YES, isBundleClass(cls), nullptr);
if (rwe) rwe->methods.attachLists(&list, 1);
}
- 調(diào)用
prepareMethodLists
將方法寫入方法列表
static void
fixupMethodList(method_list_t *mlist, bool bundleCopy, bool sort)
{
runtimeLock.assertLocked();
ASSERT(!mlist->isFixedUp());
// fixme lock less in attachMethodLists ?
// dyld3 may have already uniqued, but not sorted, the list
if (!mlist->isUniqued()) {
mutex_locker_t lock(selLock);
// Unique selectors in list.
for (auto& meth : *mlist) {
const char *name = sel_cname(meth.name());
meth.setName(sel_registerNameNoLock(name, bundleCopy));
}
}
// Sort by selector address.
// Don't try to sort small lists, as they're immutable.
// Don't try to sort big lists of nonstandard size, as stable_sort
// won't copy the entries properly.
if (sort && !mlist->isSmallList() && mlist->entsize() == method_t::bigSize) {
method_t::SortBySELAddress sorter;
std::stable_sort(&mlist->begin()->big(), &mlist->end()->big(), sorter);
}
// Mark method list as uniqued and sorted.
// Can't mark small lists, since they're immutable.
if (!mlist->isSmallList()) {
mlist->setFixedUp();
}
}
static void
prepareMethodLists(Class cls, method_list_t **addedLists, int addedCount,
bool baseMethods, bool methodsFromBundle, const char *why)
{
runtimeLock.assertLocked();
if (addedCount == 0) return;
// 省略部分代碼
// Add method lists to array.
// Reallocate un-fixed method lists.
// The new methods are PREPENDED to the method list array.
for (int i = 0; i < addedCount; i++) {
method_list_t *mlist = addedLists[i];
ASSERT(mlist);
// Fixup selectors if necessary
if (!mlist->isFixedUp()) {
fixupMethodList(mlist, methodsFromBundle, true/*sort*/);
}
}
// 省略部分代碼
}
- 調(diào)用
fixupMethodList
通過SELAddress
對(duì)方法進(jìn)行排序
static void
fixupMethodList(method_list_t *mlist, bool bundleCopy, bool sort)
{
runtimeLock.assertLocked();
ASSERT(!mlist->isFixedUp());
// Sort by selector address.
// Don't try to sort small lists, as they're immutable.
// Don't try to sort big lists of nonstandard size, as stable_sort
// won't copy the entries properly.
if (sort && !mlist->isSmallList() && mlist->entsize() == method_t::bigSize) {
method_t::SortBySELAddress sorter;
std::stable_sort(&mlist->begin()->big(), &mlist->end()->big(), sorter);
}
}
- 如果
rwe
存在祸穷,則調(diào)用attachLists
將list
寫入rwe
中
如果有屬性且存在rwe,將屬性列表寫入rwe
property_list_t *proplist = ro->baseProperties;
if (rwe && proplist) {
rwe->properties.attachLists(&proplist, 1);
}
如果有協(xié)議且存在rwe勺三,將協(xié)議列表寫入rwe
protocol_list_t *protolist = ro->baseProtocols;
if (rwe && protolist) {
rwe->protocols.attachLists(&protolist, 1);
}
添加分類
void attachToClass(Class cls, Class previously, int flags)
{
runtimeLock.assertLocked();
ASSERT((flags & ATTACH_CLASS) ||
(flags & ATTACH_METACLASS) ||
(flags & ATTACH_CLASS_AND_METACLASS));
auto &map = get();
auto it = map.find(previously);//找到一個(gè)分類進(jìn)來一次雷滚,即一個(gè)個(gè)加載分類,不要混亂
if (it != map.end()) {//這里會(huì)走進(jìn)來:當(dāng)主類沒有實(shí)現(xiàn)load吗坚,分類開始加載祈远,迫使主類加載,會(huì)走到if流程里面
category_list &list = it->second;
if (flags & ATTACH_CLASS_AND_METACLASS) {//判斷是否是元類
int otherFlags = flags & ~ATTACH_CLASS_AND_METACLASS;
attachCategories(cls, list.array(), list.count(), otherFlags | ATTACH_CLASS);//實(shí)例方法
attachCategories(cls->ISA(), list.array(), list.count(), otherFlags | ATTACH_METACLASS);//類方法
} else {
//如果不是元類商源,則只走一次 attachCategories
attachCategories(cls, list.array(), list.count(), flags);
}
map.erase(it);
}
}
attachCategories將分類的方法车份、屬性、協(xié)議添加到主類中
// Attach method lists and properties and protocols from categories to a class.
// Assumes the categories in cats are all loaded and sorted by load order,
// oldest categories first.
static void
attachCategories(Class cls, const locstamped_category_t *cats_list, uint32_t cats_count,
int flags)
{
if (slowpath(PrintReplacedMethods)) {
printReplacements(cls, cats_list, cats_count);
}
if (slowpath(PrintConnecting)) {
_objc_inform("CLASS: attaching %d categories to%s class '%s'%s",
cats_count, (flags & ATTACH_EXISTING) ? " existing" : "",
cls->nameForLogging(), (flags & ATTACH_METACLASS) ? " (meta)" : "");
}
/*
* Only a few classes have more than 64 categories during launch.
* This uses a little stack, and avoids malloc.
*
* Categories must be added in the proper order, which is back
* to front. To do that with the chunking, we iterate cats_list
* from front to back, build up the local buffers backwards,
* and call attachLists on the chunks. attachLists prepends the
* lists, so the final result is in the expected order.
*/
constexpr uint32_t ATTACH_BUFSIZ = 64;
method_list_t *mlists[ATTACH_BUFSIZ];
property_list_t *proplists[ATTACH_BUFSIZ];
protocol_list_t *protolists[ATTACH_BUFSIZ];
uint32_t mcount = 0;
uint32_t propcount = 0;
uint32_t protocount = 0;
bool fromBundle = NO;
bool isMeta = (flags & ATTACH_METACLASS);
auto rwe = cls->data()->extAllocIfNeeded();
for (uint32_t i = 0; i < cats_count; i++) {
auto& entry = cats_list[i];
method_list_t *mlist = entry.cat->methodsForMeta(isMeta);
if (mlist) {
if (mcount == ATTACH_BUFSIZ) {
prepareMethodLists(cls, mlists, mcount, NO, fromBundle, __func__);
rwe->methods.attachLists(mlists, mcount);
mcount = 0;
}
mlists[ATTACH_BUFSIZ - ++mcount] = mlist;
fromBundle |= entry.hi->isBundle();
}
property_list_t *proplist =
entry.cat->propertiesForMeta(isMeta, entry.hi);
if (proplist) {
if (propcount == ATTACH_BUFSIZ) {
rwe->properties.attachLists(proplists, propcount);
propcount = 0;
}
proplists[ATTACH_BUFSIZ - ++propcount] = proplist;
}
protocol_list_t *protolist = entry.cat->protocolsForMeta(isMeta);
if (protolist) {
if (protocount == ATTACH_BUFSIZ) {
rwe->protocols.attachLists(protolists, protocount);
protocount = 0;
}
protolists[ATTACH_BUFSIZ - ++protocount] = protolist;
}
}
if (mcount > 0) {
prepareMethodLists(cls, mlists + ATTACH_BUFSIZ - mcount, mcount,
NO, fromBundle, __func__);
rwe->methods.attachLists(mlists + ATTACH_BUFSIZ - mcount, mcount);
if (flags & ATTACH_EXISTING) {
flushCaches(cls, __func__, [](Class c){
// constant caches have been dealt with in prepareMethodLists
// if the class still is constant here, it's fine to keep
return !c->cache.isConstantOptimizedCache();
});
}
}
rwe->properties.attachLists(proplists + ATTACH_BUFSIZ - propcount, propcount);
rwe->protocols.attachLists(protolists + ATTACH_BUFSIZ - protocount, protocount);
}
通過上述源碼牡彻,我們可以發(fā)現(xiàn)這里操作的都是rwe
扫沼,rwe = cls->data()->extAllocIfNeeded()
,在本類中也有rwe
庄吼,但是我們發(fā)現(xiàn)缎除,本類的屬性及協(xié)議會(huì)存在rwe中,如果存在rwe总寻,則方法列表也會(huì)添加到rwe
中器罐。
- 如果本類本來就存在
rwe
,則直接使用 - 如果本類不存在
rwe
, 則開辟
class_rw_ext_t *extAllocIfNeeded() {
auto v = get_ro_or_rwe();
if (fastpath(v.is<class_rw_ext_t *>())) { //判斷rwe是否存在
return v.get<class_rw_ext_t *>();//如果存在渐行,則直接獲取
} else {
return extAlloc(v.get<const class_ro_t *>());//如果不存在則進(jìn)行開辟
}
}
??//extAlloc源碼實(shí)現(xiàn)
class_rw_ext_t *
class_rw_t::extAlloc(const class_ro_t *ro, bool deepCopy)
{
runtimeLock.assertLocked();
auto rwe = objc::zalloc<class_rw_ext_t>();
rwe->version = (ro->flags & RO_META) ? 7 : 0;
method_list_t *list = ro->baseMethods();
if (list) {
if (deepCopy) list = list->duplicate();
rwe->methods.attachLists(&list, 1);
}
// See comments in objc_duplicateClass
// property lists and protocol lists historically
// have not been deep-copied
//
// This is probably wrong and ought to be fixed some day
property_list_t *proplist = ro->baseProperties;
if (proplist) {
rwe->properties.attachLists(&proplist, 1);
}
protocol_list_t *protolist = ro->baseProtocols;
if (protolist) {
rwe->protocols.attachLists(&protolist, 1);
}
set_ro_or_rwe(rwe, ro);
return rwe;
}
這里我們可以看到首先是加載的本類的
baseMethods
技矮,然后是baseProperties
,再然后是baseProtocols
殊轴,最后返回rwe
小結(jié)
rwe
會(huì)伴隨屬性衰倦、協(xié)議、分類的產(chǎn)生而產(chǎn)生旁理;
attachLists將方法寫入rwe
void attachLists(List* const * addedLists, uint32_t addedCount) {
if (addedCount == 0) return;
if (hasArray()) {
// many lists -> many lists
//計(jì)算數(shù)組中舊lists的大小
uint32_t oldCount = array()->count;
//計(jì)算新的容量大小 = 舊數(shù)據(jù)大小+新數(shù)據(jù)大小
uint32_t newCount = oldCount + addedCount;
//根據(jù)新的容量大小樊零,開辟一個(gè)數(shù)組,類型是 array_t孽文,通過array()獲取
setArray((array_t *)realloc(array(), array_t::byteSize(newCount)));
//設(shè)置數(shù)組大小
array()->count = newCount;
//舊的數(shù)據(jù)從 addedCount 數(shù)組下標(biāo)開始 存放舊的lists驻襟,大小為 舊數(shù)據(jù)大小 * 單個(gè)舊list大小
memmove(array()->lists + addedCount, array()->lists,
oldCount * sizeof(array()->lists[0]));
//新數(shù)據(jù)從數(shù)組 首位置開始存儲(chǔ),存放新的lists芋哭,大小為 新數(shù)據(jù)大小 * 單個(gè)list大小
memcpy(
array()->lists, addedLists,
addedCount * sizeof(array()->lists[0]));
}
else if (!list && addedCount == 1) {
// 0 lists -> 1 list
list = addedLists[0];//將list加入mlists的第一個(gè)元素沉衣,此時(shí)的list是一個(gè)一維數(shù)組
validate();
}
else {
// 1 list -> many lists 有了一個(gè)list,有往里加很多l(xiāng)ist
//新的list就是分類减牺,來自LRU的算法思維豌习,即最近最少使用
//獲取舊的list
List* oldList = list;
uint32_t oldCount = oldList ? 1 : 0;
//計(jì)算容量和 = 舊list個(gè)數(shù)+新lists的個(gè)數(shù)
uint32_t newCount = oldCount + addedCount;
//開辟一個(gè)容量和大小的集合存谎,類型是 array_t,即創(chuàng)建一個(gè)數(shù)組肥隆,放到array中羊异,通過array()獲取
setArray((array_t *)malloc(array_t::byteSize(newCount)));
//設(shè)置數(shù)組的大小
array()->count = newCount;
//判斷old是否存在阀参,old肯定是存在的振乏,將舊的list放入到數(shù)組的末尾
if (oldList) array()->lists[addedCount] = oldList;
// memcpy(開始位置戳气,放什么,放多大) 是內(nèi)存平移吸占,從數(shù)組起始位置存入新的list
//其中array()->lists 表示首位元素位置
memcpy(array()->lists, addedLists,
addedCount * sizeof(array()->lists[0]));
}
}
memmove和memcpy的區(qū)別
- 在不知道需要平移的內(nèi)存大小時(shí)晴叨,需要memmove進(jìn)行內(nèi)存平移,保證安全
- memcpy從原內(nèi)存地址的起始位置開始拷貝若干個(gè)字節(jié)到目標(biāo)內(nèi)存地址中矾屯,速度快
存儲(chǔ)過程
0-1
如果還沒有數(shù)據(jù)篙螟,將傳入的列表加入第一個(gè)位置
1-many
首先計(jì)算出需要的大小,然后之前的舊數(shù)據(jù)放入末尾问拘,再將添加的數(shù)據(jù)從0號(hào)位置拷貝到array里面
已經(jīng)有了很多數(shù)據(jù)的時(shí)候
首先計(jì)算出需要的大小
接著將舊數(shù)據(jù)平移到新增數(shù)據(jù)大小的位置下,進(jìn)行存放
最后將添加的數(shù)據(jù)從0號(hào)位置拷貝到array里面
從上述源碼就能解釋為什么同名的分類的方法會(huì)先于本類的方法調(diào)用惧所,在上面我們知道骤坐,開辟
rwe
之后,寫入順序是baseMethods
→baseProperties
→baseProtocols
下愈,最后才是分類纽绍,所以分類的同名方法會(huì)被優(yōu)先調(diào)用
非懶加載類的加載流程
通過上面的分析,我們知道了當(dāng)執(zhí)行到realizeClassWithoutSwift
的時(shí)候势似,即代表開始加載該類了拌夏,我們的非懶加載類的加載流程_dyld_start
→ _os_object_init
→ _objc_init
→ dyld::notifyBatchPartial
→ map_images
→ map_images_nolock
→ _read_images
→ realizeClassWithoutSwift
→ methodizeClass
。
我們通過自定義的類履因,并重寫了+ (void)load
方法來定一個(gè)非懶加載類障簿。然后在realizeClassWithoutSwift
源碼中加入如下代碼,來研究自己定義的類來探索栅迄。
const char *mangledName = cls->nonlazyMangledName();
const char *exploreName = "Person";
if (strcmp(mangledName, exploreName) == 0) {
printf("%s------%s\n", __func__, mangledName);
}
在斷點(diǎn)處查看bt
站故,和當(dāng)前線程的執(zhí)行記錄
懶加載類的加載流程
根據(jù)上面的經(jīng)驗(yàn),我們?nèi)c(diǎn)自定義類中的+ (void)load
方法毅舆,將其變?yōu)閼屑虞d類西篓,然后運(yùn)行
從上圖我們可以看出,懶加載類的加載延后到了憋活,類
alloc
的時(shí)機(jī)岂津,通過消息轉(zhuǎn)發(fā)來完成類的加載其流程objc_alloc
→ _objc_msgSend_uncached
→ lookUpImpOrForward
→ realizeAndInitializeIfNeeded_locked
→ realizeClassMaybeSwiftAndLeaveLocked
→ realizeClassMaybeSwiftMaybeRelock
→ realizeClassWithoutSwift
→ methodizeClass
。總結(jié)
- 懶加載類的加載悦即,需要使用到該類吮成,進(jìn)行消息發(fā)送的時(shí)候橱乱,才開始加載該類
- 非懶加載類,在
map_images
到_read_images
之后便開始加載到內(nèi)存中