第二課改善深層神經(jīng)網(wǎng)絡(luò)assignment3-TensorFlow Tutorial

TensorFlow Tutorial

Welcome to this week's programming assignment. Until now, you've always used numpy to build neural networks. Now we will step you through a deep learning framework that will allow you to build neural networks more easily. Machine learning frameworks like TensorFlow, PaddlePaddle, Torch, Caffe, Keras, and many others can speed up your machine learning development significantly. All of these frameworks also have a lot of documentation, which you should feel free to read. In this assignment, you will learn to do the following in TensorFlow:

  • Initialize variables
  • Start your own session
  • Train algorithms
  • Implement a Neural Network

Programing frameworks can not only shorten your coding time, but sometimes also perform optimizations that speed up your code.

1 - Exploring the Tensorflow Library

To start, you will import the library:

import math
import numpy as np
import h5py
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.python.framework import ops
from tf_utils import load_dataset, random_mini_batches, convert_to_one_hot, predict

%matplotlib inline
np.random.seed(1)

Now that you have imported the library, we will walk you through its different applications. You will start with an example, where we compute for you the loss of one training example.
loss = \mathcal{L}(\hat{y}, y) = (\hat y^{(i)} - y^{(i)})^2 \tag{1}

y_hat = tf.constant(36, name='y_hat')            # Define y_hat constant. Set to 36.
y = tf.constant(39, name='y')                    # Define y. Set to 39

loss = tf.Variable((y - y_hat)**2, name='loss')  # Create a variable for the loss

init = tf.global_variables_initializer()         # When init is run later (session.run(init)),
                                                 # the loss variable will be initialized and ready to be computed
with tf.Session() as session:                   # Create a session and print the output
    session.run(init)                            # Initializes the variables
    print(session.run(loss))                     # Prints the loss

Writing and running programs in TensorFlow has the following steps:

  1. Create Tensors (variables) that are not yet executed/evaluated.
  2. Write operations between those Tensors.
  3. Initialize your Tensors.
  4. Create a Session.
  5. Run the Session. This will run the operations you'd written above.

Therefore, when we created a variable for the loss, we simply defined the loss as a function of other quantities, but did not evaluate its value. To evaluate it, we had to run init=tf.global_variables_initializer(). That initialized the loss variable, and in the last line we were finally able to evaluate the value of loss and print its value.

Now let us look at an easy example. Run the cell below:

a = tf.constant(2)
b = tf.constant(10)
c = tf.multiply(a,b)
print(c)

As expected, you will not see 20! You got a tensor saying that the result is a tensor that does not have the shape attribute, and is of type "int32". All you did was put in the 'computation graph', but you have not run this computation yet. In order to actually multiply the two numbers, you will have to create a session and run it.

sess = tf.Session()
print(sess.run(c))

Great! To summarize, remember to initialize your variables, create a session and run the operations inside the session.

Next, you'll also have to know about placeholders. A placeholder is an object whose value you can specify only later.
To specify values for a placeholder, you can pass in values by using a "feed dictionary" (feed_dict variable). Below, we created a placeholder for x. This allows us to pass in a number later when we run the session.

# Change the value of x in the feed_dict

x = tf.placeholder(tf.int64, name = 'x')
print(sess.run(2 * x, feed_dict = {x: 3}))
sess.close()

When you first defined x you did not have to specify a value for it. A placeholder is simply a variable that you will assign data to only later, when running the session. We say that you feed data to these placeholders when running the session.

Here's what's happening: When you specify the operations needed for a computation, you are telling TensorFlow how to construct a computation graph. The computation graph can have some placeholders whose values you will specify only later. Finally, when you run the session, you are telling TensorFlow to execute the computation graph.

1.1 - Linear function

Lets start this programming exercise by computing the following equation: Y = WX + b, where W and X are random matrices and b is a random vector.

Exercise: Compute WX + b where W, X, and b are drawn from a random normal distribution. W is of shape (4, 3), X is (3,1) and b is (4,1). As an example, here is how you would define a constant X that has shape (3,1):

X = tf.constant(np.random.randn(3,1), name = "X")

You might find the following functions helpful:

  • tf.matmul(..., ...) to do a matrix multiplication
  • tf.add(..., ...) to do an addition
  • np.random.randn(...) to initialize randomly
# GRADED FUNCTION: linear_function

def linear_function():
    """
    Implements a linear function: 
            Initializes W to be a random tensor of shape (4,3)
            Initializes X to be a random tensor of shape (3,1)
            Initializes b to be a random tensor of shape (4,1)
    Returns: 
    result -- runs the session for Y = WX + b 
    """
    
    np.random.seed(1)
    
    ### START CODE HERE ### (4 lines of code)
    X = tf.constant(np.random.randn(3,1),name ='x')
    W = tf.constant(np.random.randn(4,3),name = 'w')
    b = tf.constant(np.random.randn(4,1),name ='b')
    Y = tf.add(tf.matmul(w,x),b) 
    ### END CODE HERE ### 
    
    # Create the session using tf.Session() and run it with sess.run(...) on the variable you want to calculate
    
    ### START CODE HERE ###
    sess = tf.Session()
    result = sess.run(y)
    ### END CODE HERE ### 
    
    # close the session 
    sess.close()

    return result
print( "result = " + str(linear_function()))

*** Expected Output ***:
result
[[-2.15657382]
[ 2.95891446]
[-1.08926781]
[-0.84538042]]

1.2 - Computing the sigmoid

Great! You just implemented a linear function. Tensorflow offers a variety of commonly used neural network functions like tf.sigmoid and tf.softmax. For this exercise lets compute the sigmoid function of an input.

You will do this exercise using a placeholder variable x. When running the session, you should use the feed dictionary to pass in the input z. In this exercise, you will have to (i) create a placeholder x, (ii) define the operations needed to compute the sigmoid using tf.sigmoid, and then (iii) run the session.

** Exercise **: Implement the sigmoid function below. You should use the following:

  • tf.placeholder(tf.float32, name = "...")
  • tf.sigmoid(...)
  • sess.run(..., feed_dict = {x: z})

Note that there are two typical ways to create and use sessions in tensorflow:

Method 1:

sess = tf.Session()
# Run the variables initialization (if needed), run the operations
result = sess.run(..., feed_dict = {...})
sess.close() # Close the session

Method 2:

with tf.Session() as sess: 
    # run the variables initialization (if needed), run the operations
    result = sess.run(..., feed_dict = {...})
    # This takes care of closing the session for you :)
# GRADED FUNCTION: sigmoid

def sigmoid(z):
    """
    Computes the sigmoid of z
    
    Arguments:
    z -- input value, scalar or vector
    
    Returns: 
    results -- the sigmoid of z
    """
    
    ### START CODE HERE ### ( approx. 4 lines of code)
    # Create a placeholder for x. Name it 'x'.
    x = tf.placeholder(tf.float32,name='x')

    # compute sigmoid(x)
    sigmoid =tf.sigmoid(x)

    # Create a session, and run it. Please use the method 2 explained above. 
    # You should use a feed_dict to pass z's value to x. 
    with tf.Session() as sess:
        # Run session and call the output "result"
        result = sess.run(sigmoid,feed_dict={x:z})
    
    ### END CODE HERE ###
    
    return result
print ("sigmoid(0) = " + str(sigmoid(0)))
print ("sigmoid(12) = " + str(sigmoid(12)))

*** Expected Output ***:
sigmoid(0)
0.5
sigmoid(12)
0.999994
To summarize, you how know how to:

  1. Create placeholders
  2. Specify the computation graph corresponding to operations you want to compute
  3. Create the session
  4. Run the session, using a feed dictionary if necessary to specify placeholder variables' values.

1.3 - Computing the Cost

You can also use a built-in function to compute the cost of your neural network. So instead of needing to write code to compute this as a function of a^{[2](i)} and y^{(i)} for i=1...m:
J = - \frac{1}{m} \sum_{i = 1}^m \large ( \small y^{(i)} \log a^{ [2] (i)} + (1-y^{(i)})\log (1-a^{ [2] (i)} )\large )\small\tag{2}

you can do it in one line of code in tensorflow!

Exercise: Implement the cross entropy loss. The function you will use is:

  • tf.nn.sigmoid_cross_entropy_with_logits(logits = ..., labels = ...)

Your code should input z, compute the sigmoid (to get a) and then compute the cross entropy cost J. All this can be done using one call to tf.nn.sigmoid_cross_entropy_with_logits, which computes

- \frac{1}{m} \sum_{i = 1}^m \large ( \small y^{(i)} \log \sigma(z^{[2](i)}) + (1-y^{(i)})\log (1-\sigma(z^{[2](i)})\large )\small\tag{2}

# GRADED FUNCTION: cost

def cost(logits, labels):
    """
    Computes the cost using the sigmoid cross entropy
    
    Arguments:
    logits -- vector containing z, output of the last linear unit (before the final sigmoid activation)
    labels -- vector of labels y (1 or 0) 
    
    Note: What we've been calling "z" and "y" in this class are respectively called "logits" and "labels" 
    in the TensorFlow documentation. So logits will feed into z, and labels into y. 
    
    Returns:
    cost -- runs the session of the cost (formula (2))
    """
    
    ### START CODE HERE ### 
    
    # Create the placeholders for "logits" (z) and "labels" (y) (approx. 2 lines)
    z = tf.placeholder(tf.float32,name='z')
    y = tf.placeholder(tf.float32,name='y')
    # Use the loss function (approx. 1 line)
    cost = tf.nn.sigmoid_cross_entropy_with_logits(logits=z,labels=y)
    
    # Create a session (approx. 1 line). See method 1 above.
    sess = tf.Session()
    
    # Run the session (approx. 1 line).
    cost = sess.run(cost,feed_dict={z:logits,y:labels})
    
    # Close the session (approx. 1 line). See method 1 above.
    sess.close()
    
    ### END CODE HERE ###
    
    return cost
logits = sigmoid(np.array([0.2,0.4,0.7,0.9]))
cost = cost(logits, np.array([0,0,1,1]))
print ("cost = " + str(cost))

** Expected Output** :
cost[ 1.00538719 1.03664088 0.41385433 0.39956614]

1.4 - Using One Hot encodings

Many times in deep learning you will have a y vector with numbers ranging from 0 to C-1, where C is the number of classes. If C is for example 4, then you might have the following y vector which you will need to convert as follows:


image.png

This is called a "one hot" encoding, because in the converted representation exactly one element of each column is "hot" (meaning set to 1). To do this conversion in numpy, you might have to write a few lines of code. In tensorflow, you can use one line of code:

  • tf.one_hot(labels, depth, axis)

Exercise: Implement the function below to take one vector of labels and the total number of classes C, and return the one hot encoding. Use tf.one_hot() to do this.

# GRADED FUNCTION: one_hot_matrix

def one_hot_matrix(labels, C):
    """
    Creates a matrix where the i-th row corresponds to the ith class number and the jth column
                     corresponds to the jth training example. So if example j had a label i. Then entry (i,j) 
                     will be 1. 
                     
    Arguments:
    labels -- vector containing the labels 
    C -- number of classes, the depth of the one hot dimension
    
    Returns: 
    one_hot -- one hot matrix
    """
    
    ### START CODE HERE ###
    
    # Create a tf.constant equal to C (depth), name it 'C'. (approx. 1 line)
    C = tf.constant(value=C,name ='C')
    
    # Use tf.one_hot, be careful with the axis (approx. 1 line)
    one_hot_matrix = tf.one_hot(labels,C,axis=0)
    
    # Create the session (approx. 1 line)
    sess = tf.Session()
    
    # Run the session (approx. 1 line)
    one_hot = sess.run(one_hot_matrix)
    
    # Close the session (approx. 1 line). See method 1 above.
    sess.close()
    
    ### END CODE HERE ###
    
    return one_hot
labels = np.array([1,2,3,0,2,1])
one_hot = one_hot_matrix(labels, C = 4)
print ("one_hot = " + str(one_hot))

Expected Output:
one_hot
[[ 0. 0. 0. 1. 0. 0.]
[ 1. 0. 0. 0. 0. 1.]
[ 0. 1. 0. 0. 1. 0.]
[ 0. 0. 1. 0. 0. 0.]]

1.5 - Initialize with zeros and ones

Now you will learn how to initialize a vector of zeros and ones. The function you will be calling is tf.ones(). To initialize with zeros you could use tf.zeros() instead. These functions take in a shape and return an array of dimension shape full of zeros and ones respectively.

Exercise: Implement the function below to take in a shape and to return an array (of the shape's dimension of ones).

  • tf.ones(shape)
# GRADED FUNCTION: ones

def ones(shape):
    """
    Creates an array of ones of dimension shape
    
    Arguments:
    shape -- shape of the array you want to create
        
    Returns: 
    ones -- array containing only ones
    """
    
    ### START CODE HERE ###
    
    # Create "ones" tensor using tf.ones(...). (approx. 1 line)
    ones = tf.ones(shape)
    
    # Create the session (approx. 1 line)
    sess = tf.Session()
    
    # Run the session to compute 'ones' (approx. 1 line)
    ones = sess.run(ones)
    
    # Close the session (approx. 1 line). See method 1 above.
    sess.close()
    
    ### END CODE HERE ###
    return ones
print ("ones = " + str(ones([3])))

Expected Output:
ones
[ 1. 1. 1.]

2 - Building your first neural network in tensorflow

In this part of the assignment you will build a neural network using tensorflow. Remember that there are two parts to implement a tensorflow model:

  • Create the computation graph
  • Run the graph

Let's delve into the problem you'd like to solve!

2.0 - Problem statement: SIGNS Dataset

One afternoon, with some friends we decided to teach our computers to decipher sign language. We spent a few hours taking pictures in front of a white wall and came up with the following dataset. It's now your job to build an algorithm that would facilitate communications from a speech-impaired person to someone who doesn't understand sign language.

  • Training set: 1080 pictures (64 by 64 pixels) of signs representing numbers from 0 to 5 (180 pictures per number).
  • Test set: 120 pictures (64 by 64 pixels) of signs representing numbers from 0 to 5 (20 pictures per number).

Note that this is a subset of the SIGNS dataset. The complete dataset contains many more signs.

Here are examples for each number, and how an explanation of how we represent the labels. These are the original pictures, before we lowered the image resolutoion to 64 by 64 pixels.


Run the following code to load the dataset.

# Loading the dataset
X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset()

Change the index below and run the cell to visualize some examples in the dataset.

# Example of a picture
index = 0
plt.imshow(X_train_orig[index])
print ("y = " + str(np.squeeze(Y_train_orig[:, index])))

As usual you flatten the image dataset, then normalize it by dividing by 255. On top of that, you will convert each label to a one-hot vector as shown in Figure 1. Run the cell below to do so.

# Flatten the training and test images
X_train_flatten = X_train_orig.reshape(X_train_orig.shape[0], -1).T
X_test_flatten = X_test_orig.reshape(X_test_orig.shape[0], -1).T
# Normalize image vectors
X_train = X_train_flatten/255.
X_test = X_test_flatten/255.
# Convert training and test labels to one hot matrices
Y_train = convert_to_one_hot(Y_train_orig, 6)
Y_test = convert_to_one_hot(Y_test_orig, 6)

print ("number of training examples = " + str(X_train.shape[1]))
print ("number of test examples = " + str(X_test.shape[1]))
print ("X_train shape: " + str(X_train.shape))
print ("Y_train shape: " + str(Y_train.shape))
print ("X_test shape: " + str(X_test.shape))
print ("Y_test shape: " + str(Y_test.shape))

Note that 12288 comes from 64 \times 64 \times 3. Each image is square, 64 by 64 pixels, and 3 is for the RGB colors. Please make sure all these shapes make sense to you before continuing.

Your goal is to build an algorithm capable of recognizing a sign with high accuracy. To do so, you are going to build a tensorflow model that is almost the same as one you have previously built in numpy for cat recognition (but now using a softmax output). It is a great occasion to compare your numpy implementation to the tensorflow one.

The model is LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SOFTMAX. The SIGMOID output layer has been converted to a SOFTMAX. A SOFTMAX layer generalizes SIGMOID to when there are more than two classes.

2.1 - Create placeholders

Your first task is to create placeholders for X and Y. This will allow you to later pass your training data in when you run your session.

Exercise: Implement the function below to create the placeholders in tensorflow.

# GRADED FUNCTION: create_placeholders

def create_placeholders(n_x, n_y):
    """
    Creates the placeholders for the tensorflow session.
    
    Arguments:
    n_x -- scalar, size of an image vector (num_px * num_px = 64 * 64 * 3 = 12288)
    n_y -- scalar, number of classes (from 0 to 5, so -> 6)
    
    Returns:
    X -- placeholder for the data input, of shape [n_x, None] and dtype "float"
    Y -- placeholder for the input labels, of shape [n_y, None] and dtype "float"
    
    Tips:
    - You will use None because it let's us be flexible on the number of examples you will for the placeholders.
      In fact, the number of examples during test/train is different.
    """

    ### START CODE HERE ### (approx. 2 lines)
    X = tf.placeholder(tf.float32,[n_x,None])
    Y = tf.placeholder(tf.float32,[n_y,None])
    ### END CODE HERE ###
    
    return X, Y
X, Y = create_placeholders(12288, 6)
print ("X = " + str(X))
print ("Y = " + str(Y))

Expected Output:
X
Tensor("Placeholder_1:0", shape=(12288, ?), dtype=float32) (not necessarily Placeholder_1)
Y
Tensor("Placeholder_2:0", shape=(10, ?), dtype=float32) (not necessarily Placeholder_2)

2.2 - Initializing the parameters

Your second task is to initialize the parameters in tensorflow.

Exercise: Implement the function below to initialize the parameters in tensorflow. You are going use Xavier Initialization for weights and Zero Initialization for biases. The shapes are given below. As an example, to help you, for W1 and b1 you could use:

W1 = tf.get_variable("W1", [25,12288], initializer = tf.contrib.layers.xavier_initializer(seed = 1))
b1 = tf.get_variable("b1", [25,1], initializer = tf.zeros_initializer())

Please use seed = 1 to make sure your results match ours.

# GRADED FUNCTION: initialize_parameters

def initialize_parameters():
    """
    Initializes parameters to build a neural network with tensorflow. The shapes are:
                        W1 : [25, 12288]
                        b1 : [25, 1]
                        W2 : [12, 25]
                        b2 : [12, 1]
                        W3 : [6, 12]
                        b3 : [6, 1]
    
    Returns:
    parameters -- a dictionary of tensors containing W1, b1, W2, b2, W3, b3
    """
    
    tf.set_random_seed(1)                   # so that your "random" numbers match ours
        
    ### START CODE HERE ### (approx. 6 lines of code)
    w1 = tf.get_variable('W1',[25,12288],initializer=tf.contrib.layers.xavier_initializer(seed=1))
    b1 = tf.get_variable('b1',[25,1],initializer=tf.zeros_initializer())
    w2 = tf.get_variable('W2',[12,25],initializer=tf.contrib.layers.xavier_initializer(seed=1))
    b2 = tf.get_variable('b2',[12,1],initializer=tf.zeros_initializer())
    w3 = tf.get_variable('W3',[6,12],initializer=tf.contrib.layers.xavier_initializer(seed=1))
    b3 = tf.get_variable('b3',[6,1],initializer=tf.zeros_initializer())
    ### END CODE HERE ###

    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2,
                  "W3": W3,
                  "b3": b3}
    
    return parameters
tf.reset_default_graph()
with tf.Session() as sess:
    parameters = initialize_parameters()
    print("W1 = " + str(parameters["W1"]))
    print("b1 = " + str(parameters["b1"]))
    print("W2 = " + str(parameters["W2"]))
    print("b2 = " + str(parameters["b2"]))

Expected Output:
W1
< tf.Variable 'W1:0' shape=(25, 12288) dtype=float32_ref >
b1
< tf.Variable 'b1:0' shape=(25, 1) dtype=float32_ref >
W2
< tf.Variable 'W2:0' shape=(12, 25) dtype=float32_ref >
b2
< tf.Variable 'b2:0' shape=(12, 1) dtype=float32_ref >
As expected, the parameters haven't been evaluated yet.

2.3 - Forward propagation in tensorflow

You will now implement the forward propagation module in tensorflow. The function will take in a dictionary of parameters and it will complete the forward pass. The functions you will be using are:

  • tf.add(...,...) to do an addition
  • tf.matmul(...,...) to do a matrix multiplication
  • tf.nn.relu(...) to apply the ReLU activation

Question: Implement the forward pass of the neural network. We commented for you the numpy equivalents so that you can compare the tensorflow implementation to numpy. It is important to note that the forward propagation stops at z3. The reason is that in tensorflow the last linear layer output is given as input to the function computing the loss. Therefore, you don't need a3!

# GRADED FUNCTION: forward_propagation

def forward_propagation(X, parameters):
    """
    Implements the forward propagation for the model: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SOFTMAX
    
    Arguments:
    X -- input dataset placeholder, of shape (input size, number of examples)
    parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3"
                  the shapes are given in initialize_parameters

    Returns:
    Z3 -- the output of the last LINEAR unit
    """
    
    # Retrieve the parameters from the dictionary "parameters" 
    w1 = parameters['W1']
    b1 = parameters['b1']
    w2 = parameters['W2']
    b2 = parameters['b2']
    w3 = parameters['W3']
    b3 = parameters['b3']
    
    ### START CODE HERE ### (approx. 5 lines)              # Numpy Equivalents:
    Z1 = tf.add(tf.matmul(w1,X),b1)                                              # Z1 = np.dot(W1, X) + b1
    A1 = tf.nn.relu(z1)                                              # A1 = relu(Z1)
    Z2 = tf.add(tf.matmul(w2,a1),b2)                                              # Z2 = np.dot(W2, a1) + b2
    A2 = tf.nn.relu(z2)                                              # A2 = relu(Z2)
    Z3 = tf.add(tf.matmul(w3,a2),b3)                                              # Z3 = np.dot(W3,Z2) + b3
    ### END CODE HERE ###
    
    return Z3
tf.reset_default_graph()

with tf.Session() as sess:
    X, Y = create_placeholders(12288, 6)
    parameters = initialize_parameters()
    Z3 = forward_propagation(X, parameters)
    print("Z3 = " + str(Z3))

Expected Output:
Z3
Tensor("Add_2:0", shape=(6, ?), dtype=float32)
You may have noticed that the forward propagation doesn't output any cache. You will understand why below, when we get to brackpropagation.

2.4 Compute cost

As seen before, it is very easy to compute the cost using:

tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = ..., labels = ...))

Question: Implement the cost function below.

  • It is important to know that the "logits" and "labels" inputs of tf.nn.softmax_cross_entropy_with_logits are expected to be of shape (number of examples, num_classes). We have thus transposed Z3 and Y for you.
  • Besides, tf.reduce_mean basically does the summation over the examples.
# GRADED FUNCTION: compute_cost 

def compute_cost(Z3, Y):
    """
    Computes the cost
    
    Arguments:
    Z3 -- output of forward propagation (output of the last LINEAR unit), of shape (6, number of examples)
    Y -- "true" labels vector placeholder, same shape as Z3
    
    Returns:
    cost - Tensor of the cost function
    """
    
    # to fit the tensorflow requirement for tf.nn.softmax_cross_entropy_with_logits(...,...)
    logits = tf.transpose(Z3)
    labels = tf.transpose(Y)
    
    ### START CODE HERE ### (1 line of code)
    cost = tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(logits=logits,labels=labels))
    ### END CODE HERE ###
    
    return cost
tf.reset_default_graph()

with tf.Session() as sess:
    X, Y = create_placeholders(12288, 6)
    parameters = initialize_parameters()
    Z3 = forward_propagation(X, parameters)
    cost = compute_cost(Z3, Y)
    print("cost = " + str(cost))

Expected Output:
cost
Tensor("Mean:0", shape=(), dtype=float32)

2.5 - Backward propagation & parameter updates

This is where you become grateful to programming frameworks. All the backpropagation and the parameters update is taken care of in 1 line of code. It is very easy to incorporate this line in the model.

After you compute the cost function. You will create an "optimizer" object. You have to call this object along with the cost when running the tf.session. When called, it will perform an optimization on the given cost with the chosen method and learning rate.

For instance, for gradient descent the optimizer would be:

optimizer = tf.train.GradientDescentOptimizer(learning_rate = learning_rate).minimize(cost)

To make the optimization you would do:

_ , c = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y})

This computes the backpropagation by passing through the tensorflow graph in the reverse order. From cost to inputs.

Note When coding, we often use _ as a "throwaway" variable to store values that we won't need to use later. Here, _ takes on the evaluated value of optimizer, which we don't need (and c takes the value of the cost variable).

2.6 - Building the model

Now, you will bring it all together!

Exercise: Implement the model. You will be calling the functions you had previously implemented.

def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.0001,
          num_epochs = 1500, minibatch_size = 32, print_cost = True):
    """
    Implements a three-layer tensorflow neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SOFTMAX.
    
    Arguments:
    X_train -- training set, of shape (input size = 12288, number of training examples = 1080)
    Y_train -- test set, of shape (output size = 6, number of training examples = 1080)
    X_test -- training set, of shape (input size = 12288, number of training examples = 120)
    Y_test -- test set, of shape (output size = 6, number of test examples = 120)
    learning_rate -- learning rate of the optimization
    num_epochs -- number of epochs of the optimization loop
    minibatch_size -- size of a minibatch
    print_cost -- True to print the cost every 100 epochs
    
    Returns:
    parameters -- parameters learnt by the model. They can then be used to predict.
    """
    
    ops.reset_default_graph()                         # to be able to rerun the model without overwriting tf variables
    tf.set_random_seed(1)                             # to keep consistent results
    seed = 3                                          # to keep consistent results
    (n_x, m) = X_train.shape                          # (n_x: input size, m : number of examples in the train set)
    n_y = Y_train.shape[0]                            # n_y : output size
    costs = []                                        # To keep track of the cost
    
    # Create Placeholders of shape (n_x, n_y)
    ### START CODE HERE ### (1 line)
    X, Y = create_placeholders(n_x,n_y)
    ### END CODE HERE ###

    # Initialize parameters
    ### START CODE HERE ### (1 line)
    parameters = initialize_parameters()
    ### END CODE HERE ###
    
    # Forward propagation: Build the forward propagation in the tensorflow graph
    ### START CODE HERE ### (1 line)
    Z3 = forward_propagation(x,parameters)
    ### END CODE HERE ###
    
    # Cost function: Add cost function to tensorflow graph
    ### START CODE HERE ### (1 line)
    cost = compute_cost(z3,y)
    ### END CODE HERE ###
    
    # Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer.
    ### START CODE HERE ### (1 line)
    optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost)
    ### END CODE HERE ###
    
    # Initialize all the variables
    init = tf.global_variables_initializer()

    # Start the session to compute the tensorflow graph
    with tf.Session() as sess:
        
        # Run the initialization
        sess.run(init)
        
        # Do the training loop
        for epoch in range(num_epochs):

            epoch_cost = 0.                       # Defines a cost related to an epoch
            num_minibatches = int(m / minibatch_size) # number of minibatches of size minibatch_size in the train set
            seed = seed + 1
            minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed)

            for minibatch in minibatches:

                # Select a minibatch
                (minibatch_X, minibatch_Y) = minibatch
                
                # IMPORTANT: The line that runs the graph on a minibatch.
                # Run the session to execute the "optimizer" and the "cost", the feedict should contain a minibatch for (X,Y).
                ### START CODE HERE ### (1 line)
                _ , minibatch_cost = sess.run([optimizer,cost],feed_dict={x:minibatch_x,y:minibatch_y})
                ### END CODE HERE ###
                
                epoch_cost += minibatch_cost / num_minibatches

            # Print the cost every epoch
            if print_cost == True and epoch % 100 == 0:
                print ("Cost after epoch %i: %f" % (epoch, epoch_cost))
            if print_cost == True and epoch % 5 == 0:
                costs.append(epoch_cost)
                
        # plot the cost
        plt.plot(np.squeeze(costs))
        plt.ylabel('cost')
        plt.xlabel('iterations (per tens)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()

        # lets save the parameters in a variable
        parameters = sess.run(parameters)
        print ("Parameters have been trained!")

        # Calculate the correct predictions
        correct_prediction = tf.equal(tf.argmax(Z3), tf.argmax(Y))

        # Calculate accuracy on the test set
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

        print ("Train Accuracy:", accuracy.eval({X: X_train, Y: Y_train}))
        print ("Test Accuracy:", accuracy.eval({X: X_test, Y: Y_test}))
        
        return parameters

Run the following cell to train your model! On our machine it takes about 5 minutes. Your "Cost after epoch 100" should be 1.016458. If it's not, don't waste time; interrupt the training by clicking on the square (?) in the upper bar of the notebook, and try to correct your code. If it is the correct cost, take a break and come back in 5 minutes!

parameters = model(X_train, Y_train, X_test, Y_test)

Expected Output:
Train Accuracy
0.999074
Test Accuracy
0.716667
Amazing, your algorithm can recognize a sign representing a figure between 0 and 5 with 71.7% accuracy.

Insights:

  • Your model seems big enough to fit the training set well. However, given the difference between train and test accuracy, you could try to add L2 or dropout regularization to reduce overfitting.
  • Think about the session as a block of code to train the model. Each time you run the session on a minibatch, it trains the parameters. In total you have run the session a large number of times (1500 epochs) until you obtained well trained parameters.

2.7 - Test with your own image (optional / ungraded exercise)

Congratulations on finishing this assignment. You can now take a picture of your hand and see the output of your model. To do that:
1. Click on "File" in the upper bar of this notebook, then click "Open" to go on your Coursera Hub.
2. Add your image to this Jupyter Notebook's directory, in the "images" folder
3. Write your image's name in the following code
4. Run the code and check if the algorithm is right!

import scipy
from PIL import Image
from scipy import ndimage

## START CODE HERE ## (PUT YOUR IMAGE NAME) 
my_image = "thumbs_up.jpg"
## END CODE HERE ##

# We preprocess your image to fit your algorithm.
fname = "images/" + my_image
image = np.array(ndimage.imread(fname, flatten=False))
my_image = scipy.misc.imresize(image, size=(64,64)).reshape((1, 64*64*3)).T
my_image_prediction = predict(my_image, parameters)

plt.imshow(image)
print("Your algorithm predicts: y = " + str(np.squeeze(my_image_prediction)))

You indeed deserved a "thumbs-up" although as you can see the algorithm seems to classify it incorrectly. The reason is that the training set doesn't contain any "thumbs-up", so the model doesn't know how to deal with it! We call that a "mismatched data distribution" and it is one of the various of the next course on "Structuring Machine Learning Projects".

What you should remember:

  • Tensorflow is a programming framework used in deep learning
  • The two main object classes in tensorflow are Tensors and Operators.
  • When you code in tensorflow you have to take the following steps:
    • Create a graph containing Tensors (Variables, Placeholders ...) and Operations (tf.matmul, tf.add, ...)
    • Create a session
    • Initialize the session
    • Run the session to execute the graph
  • You can execute the graph multiple times as you've seen in model()
  • The backpropagation and optimization is automatically done when running the session on the "optimizer" object.
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末统求,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子羡玛,更是在濱河造成了極大的恐慌笛粘,老刑警劉巖扫步,帶你破解...
    沈念sama閱讀 218,386評(píng)論 6 506
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件队贱,死亡現(xiàn)場(chǎng)離奇詭異降铸,居然都是意外死亡,警方通過(guò)查閱死者的電腦和手機(jī)偷线,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 93,142評(píng)論 3 394
  • 文/潘曉璐 我一進(jìn)店門(mén)磨确,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái),“玉大人淋昭,你說(shuō)我怎么就攤上這事俐填。” “怎么了翔忽?”我有些...
    開(kāi)封第一講書(shū)人閱讀 164,704評(píng)論 0 353
  • 文/不壞的土叔 我叫張陵英融,是天一觀的道長(zhǎng)。 經(jīng)常有香客問(wèn)我歇式,道長(zhǎng)驶悟,這世上最難降的妖魔是什么? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 58,702評(píng)論 1 294
  • 正文 為了忘掉前任材失,我火速辦了婚禮痕鳍,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己笼呆,他們只是感情好熊响,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,716評(píng)論 6 392
  • 文/花漫 我一把揭開(kāi)白布。 她就那樣靜靜地躺著诗赌,像睡著了一般汗茄。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上铭若,一...
    開(kāi)封第一講書(shū)人閱讀 51,573評(píng)論 1 305
  • 那天洪碳,我揣著相機(jī)與錄音,去河邊找鬼叼屠。 笑死瞳腌,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的镜雨。 我是一名探鬼主播嫂侍,決...
    沈念sama閱讀 40,314評(píng)論 3 418
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼冷离!你這毒婦竟也來(lái)了吵冒?” 一聲冷哼從身側(cè)響起纯命,我...
    開(kāi)封第一講書(shū)人閱讀 39,230評(píng)論 0 276
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤西剥,失蹤者是張志新(化名)和其女友劉穎,沒(méi)想到半個(gè)月后亿汞,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體瞭空,經(jīng)...
    沈念sama閱讀 45,680評(píng)論 1 314
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,873評(píng)論 3 336
  • 正文 我和宋清朗相戀三年疗我,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了咆畏。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 39,991評(píng)論 1 348
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡吴裤,死狀恐怖旧找,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情麦牺,我是刑警寧澤钮蛛,帶...
    沈念sama閱讀 35,706評(píng)論 5 346
  • 正文 年R本政府宣布,位于F島的核電站剖膳,受9級(jí)特大地震影響魏颓,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜吱晒,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,329評(píng)論 3 330
  • 文/蒙蒙 一甸饱、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦叹话、人聲如沸偷遗。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 31,910評(píng)論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)鹦肿。三九已至,卻和暖如春辅柴,著一層夾襖步出監(jiān)牢的瞬間箩溃,已是汗流浹背。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 33,038評(píng)論 1 270
  • 我被黑心中介騙來(lái)泰國(guó)打工碌嘀, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留涣旨,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 48,158評(píng)論 3 370
  • 正文 我出身青樓股冗,卻偏偏與公主長(zhǎng)得像霹陡,于是被迫代替她去往敵國(guó)和親。 傳聞我的和親對(duì)象是個(gè)殘疾皇子止状,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 44,941評(píng)論 2 355

推薦閱讀更多精彩內(nèi)容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi閱讀 7,332評(píng)論 0 10
  • 講真烹棉,我是一個(gè)特別不喜歡跑步的人,肯定因?yàn)樽约罕容^懶怯疤,然后跑完那種喘氣的感覺(jué)特別不舒服浆洗。 今天聽(tīng)了樊登老師講的《跑...
    所喜所惡閱讀 249評(píng)論 0 0
  • 【一】手繪日簽圖 【冉繪】?【禪繞畫(huà)】?【早安心語(yǔ)】 『Do what you can, with what yo...
    冉聽(tīng)花開(kāi)閱讀 363評(píng)論 0 4
  • 今天的內(nèi)容是:說(shuō)造就別人的話而不是愛(ài)別人的話。 再大的事情集峦,也會(huì)有解決方法的伏社,時(shí)間會(huì)幫助我們沖淡它們。 有時(shí)候付出...
    長(zhǎng)期主義者慶福閱讀 238評(píng)論 0 0
  • 王寶強(qiáng)事件發(fā)生以后塔淤,奧運(yùn)運(yùn)也沒(méi)人看了摘昌,不明真相的吃瓜群眾天天等著寶寶的連載,所有流量都給了寶寶高蜂。僅兩天各路娛樂(lè)媒體...
    朗里格朗朗閱讀 475評(píng)論 0 0