《線(xiàn)性代數(shù)應(yīng)該這樣學(xué)》課內(nèi)驗(yàn)證3-線(xiàn)性映射

CHAPTER 3 Linear Maps

  1. Make sure you verify that each of the functions defined below is indeed a linear map:
    • zero: 0 \in \mathcal{L}(V,W) is defined by 0v=0.
    • identity: I \in \mathcal{L}(V,V) is defined by Iv=v.
    • multiplication by x^2: T \in \mathcal{L}(\mathcal{P}(\mathbb{R}),\mathcal{P}(\mathbb{R})) is defined by (Tp)(x)=x^2p(x) for x \in \mathbb{R}.
    • backwar shift: T \in \mathcal{L}(\mathbb{F}^{\infty}, \mathbb{F}^{\infty}) is defined by T(x_1,x_2,x_3,\cdots)=(x_2,x_3,\cdots).
    • from \mathbb{F}^{n} to \mathbb{F}^{m} : T \in \mathcal{L}(\mathbb{F}^{n}, \mathbb{F}^{m}) is defined by T(x_1, \cdots,x_n)=(A_{1,1}x_1+\cdots+A_{1,n}x_n,\cdots,A_{m,1}x_1+\cdots+A_{m,n}x_n).

Proof

  • zero. Additivity: for all u,v \in V, 0(u+v)=0=0u+0v.

    homogeneity: for all \lambda \in \mathbb{F} and all v \in V, 0(\lambda v)=0=\lambda 0= \lambda 0(v).

  • identity: Additivity: for all u,v \in V, I(u+v)=u+v=I(u)+I(v).

    homogeneity: for all \lambda \in \mathbb{F} and all v \in V, I(\lambda v)=\lambda v=\lambda I(v).

  • multiplication by x^2: Additivity: for all u,v \in \mathcal{P}(\mathbb{R}), T(u+v)(x)=x^2(u+v)=x^2u+x^2v=T(u)+T(v)

    homogeneity: for all \lambda \in \mathbb{F} and all v \in \mathcal{P}(\mathbb{R}), T(\lambda v)(x)=\lambda x^2 v=\lambda T(v).

  • backwar shift: Additivity: for all u,v \in \mathbb{F}^{\infty}, T(u+v)=T((u_1+v_1,u_2+v_2,u_3+v_3,\cdots))=(u_2+v_2,u_3+v_3,\cdots)=(u_2,u_3,\cdots)+(v_2,v_3,\cdots)=T(u)+T(v)

    homogeneity: for all \lambda \in \mathbb{F} and all v \in \mathbb{F}^{\infty}, T(\lambda v)=T((\lambda v_1,\lambda v_2,\lambda v_3,\cdots))=(\lambda v_2,\lambda v_3,\cdots)=\lambda (v_2,v_3,\cdots)=\lambda T(v)

  • from \mathbb{F}^{n} to \mathbb{F}^{m} : Additivity: for all u,v \in \mathbb{F}^{n},
    \begin{align*} T(u+v) &= T(u_1+v_1,\cdots,u_n+v_n)=(A_{1,1}(u_1+v_1)+\cdots+A_{1,n}(u_n+v_n),\cdots,A_{m,1}(u_1+v_1)+\cdots+A_{m,n}(u_n+v_n)) \\ &= (A_{1,1}u_1+\cdots+A_{1,n}u_n+A_{1,1}v_1+\cdots+A_{1,n}v_n , \cdots,A_{m,1}u_1+\cdots+A_{m,n}u_n+A_{m,1}v_1+\cdots+A_{m,n}v_n) \\ &= (A_{1,1}u_1+\cdots+A_{1,n}u_n ,\cdots , A_{m,1}u_1+\cdots+A_{m,n}u_n)+(A_{1,1}v_1+\cdots+A_{1,n}v_n ,\cdots , A_{m,1}v_1+\cdots+A_{m,n}v_n) \\ &= T(u)+T(v) \end{align*}
    homogeneity: for all \lambda \in \mathbb{F} and all v \in \mathbb{F}^{n},
    \begin{align*} T(\lambda v)&=T(\lambda v_1+\cdots+\lambda v_n) \\ &= (\lambda A_{1,1}v_1+\cdots+\lambda A_{1,n}v_n ,\cdots , \lambda A_{m,1}v_1+\cdots+\lambda A_{m,n}v_n) \\ &= \lambda (A_{1,1}v_1+\cdots+A_{1,n}v_n ,\cdots , A_{m,1}v_1+\cdots+A_{m,n}v_n) \\ &= \lambda T(v) \end{align*}

  1. You should verify that ST is indeed a linear map from U to W whenever T \in \mathcal{L}(U,V) and S \in \mathcal{L}(V,W).

Proof Additivity: for all u,v \in U, (ST)(u+v)=S(T(u+v))=S(T(u)+T(v))=S(T(u))+S(T(v))=(ST)(u)+(ST)(v)

homogeneity: for all \lambda \in \mathbb{F} and all u\in U, (ST)(\lambda u)=S(T(\lambda u))=S(\lambda Tu)=\lambda S(Tu)=\lambda (ST)(u)

  1. The reader should verify that \pi is indeed a linear map.

Proof Additivity: for all v,w \in V, \pi (v+w)=(v+w)+U=(v+U)+(w+U)=\pi(v)+\pi(w)

homogeneity: for all \lambda \in \mathbb{F} and all v \in V, \pi (\lambda v)=\lambda v+U=\lambda (v+U)=\lambda \pi(v)

  1. The routine verification that \tilde{T} is linear is left to the reader.

Proof Additivity: for all u,v \in V, \tilde{T}(u+\text{null }T +v+\text{null }T)=T(u+v)=T(u)+T(v)=\tilde{T}(u+\text{null }T)+\tilde{T}(v+\text{null }T)

homogeneity: for all \lambda \in \mathbb{F} and all v \in V, \tilde{T}(\lambda v+\text{null }T)=T(\lambda v)=\lambda T(v)=\lambda \tilde{T}(v+\text{null }T)

  1. You should construct the proof outlined in the paragraph above, even though a slicker proof is presented here. Suppose V is finite-dimensional and U is a subspace of V. Then \dim U + \dim U^0 =\dim V.

Proof Let u_1,\cdots,u_m be a basis of U; thus \dim U =m. The linearly independent list u_1,\cdots,u_m can be extended to a basis u_1,\cdots,u_m,\cdots, u_n of V.

Thus \dim V=n. To complete the proof, we need only show that U^0 is finite-dimensional and \dim U^0=n-m.

Suppose \varphi_1,\cdots , \varphi_m,\cdots,\varphi_n is a basis of V', \varphi \in U^0. We can write
\varphi =c_1\varphi_1+\cdots+c_m\varphi_m+\cdots+c_n\varphi_n
Because u_1 \in U and \varphi \in U^0, we have
0=\varphi(u_1)=(c_1\varphi_1+\cdots+c_m\varphi_m+\cdots+c_n\varphi_n)(u_1)=c_1
Similarly, c_2,\cdots,c_m all are 0. Hence \varphi=c_{m+1}\varphi_{m+1}+\cdots+c_n\varphi_n.

Thus \varphi \in \text{span}(\varphi_{m+1},\cdots,\varphi_n), which shows that U^0 \subset \text{span}(\varphi_{m+1},\cdots,\varphi_n).

Suppose \varphi \in \text{span}(\varphi_{m+1},\cdots,\varphi_n). Then there exist c_{m+1},\cdots,c_n such that \varphi=c_{m+1}\varphi_{m+1}+\cdots+c_n\varphi_n. If (a_1,\cdots,a_m,0,\cdots,0) \in U, then
\varphi(a_1,\cdots,a_m,0,\cdots,0)=0
Thus \varphi \in U^0, which shows that \text{span}(\varphi_{m+1},\cdots,\varphi_n) \subset U^0.

Hence U^0=\text{span}(\varphi_{m+1},\cdots,\varphi_n). We also know that \varphi_{1},\cdots,\varphi_n is a basis of V'. Therefore \varphi_{m+1},\cdots,\varphi_{n} is linearly independent.

Hence it can be a basis of U^0. Thus \dim U^0=n-m.

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末鹤树,一起剝皮案震驚了整個(gè)濱河市规脸,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖懈糯,帶你破解...
    沈念sama閱讀 217,277評(píng)論 6 503
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件刹前,死亡現(xiàn)場(chǎng)離奇詭異为鳄,居然都是意外死亡净宵,警方通過(guò)查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 92,689評(píng)論 3 393
  • 文/潘曉璐 我一進(jìn)店門(mén)拒炎,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái)挪拟,“玉大人,你說(shuō)我怎么就攤上這事击你∮褡椋” “怎么了?”我有些...
    開(kāi)封第一講書(shū)人閱讀 163,624評(píng)論 0 353
  • 文/不壞的土叔 我叫張陵丁侄,是天一觀(guān)的道長(zhǎng)球切。 經(jīng)常有香客問(wèn)我,道長(zhǎng)绒障,這世上最難降的妖魔是什么? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 58,356評(píng)論 1 293
  • 正文 為了忘掉前任捍歪,我火速辦了婚禮户辱,結(jié)果婚禮上鸵钝,老公的妹妹穿的比我還像新娘。我一直安慰自己庐镐,他們只是感情好恩商,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,402評(píng)論 6 392
  • 文/花漫 我一把揭開(kāi)白布。 她就那樣靜靜地躺著必逆,像睡著了一般怠堪。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上名眉,一...
    開(kāi)封第一講書(shū)人閱讀 51,292評(píng)論 1 301
  • 那天粟矿,我揣著相機(jī)與錄音,去河邊找鬼损拢。 笑死陌粹,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的福压。 我是一名探鬼主播掏秩,決...
    沈念sama閱讀 40,135評(píng)論 3 418
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼荆姆!你這毒婦竟也來(lái)了蒙幻?” 一聲冷哼從身側(cè)響起,我...
    開(kāi)封第一講書(shū)人閱讀 38,992評(píng)論 0 275
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤胆筒,失蹤者是張志新(化名)和其女友劉穎邮破,沒(méi)想到半個(gè)月后,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體腐泻,經(jīng)...
    沈念sama閱讀 45,429評(píng)論 1 314
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡决乎,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,636評(píng)論 3 334
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了派桩。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片构诚。...
    茶點(diǎn)故事閱讀 39,785評(píng)論 1 348
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖铆惑,靈堂內(nèi)的尸體忽然破棺而出范嘱,到底是詐尸還是另有隱情,我是刑警寧澤员魏,帶...
    沈念sama閱讀 35,492評(píng)論 5 345
  • 正文 年R本政府宣布丑蛤,位于F島的核電站,受9級(jí)特大地震影響撕阎,放射性物質(zhì)發(fā)生泄漏受裹。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,092評(píng)論 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望棉饶。 院中可真熱鬧厦章,春花似錦、人聲如沸照藻。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 31,723評(píng)論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)幸缕。三九已至群发,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間发乔,已是汗流浹背熟妓。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 32,858評(píng)論 1 269
  • 我被黑心中介騙來(lái)泰國(guó)打工, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留列疗,地道東北人滑蚯。 一個(gè)月前我還...
    沈念sama閱讀 47,891評(píng)論 2 370
  • 正文 我出身青樓,卻偏偏與公主長(zhǎng)得像抵栈,于是被迫代替她去往敵國(guó)和親告材。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 44,713評(píng)論 2 354

推薦閱讀更多精彩內(nèi)容