本文案例數(shù)據(jù)是NHLBI(美國(guó)國(guó)家心肺血液研究所)著名的Framingham心臟研究數(shù)據(jù)集的一個(gè)子集。大概長(zhǎng)這個(gè)樣子:
-
代碼實(shí)現(xiàn):
1.1 繪制決策曲線(Decision Curve)
#install.packages("rmda")
library(rmda)
Data<-read.csv('2.20.Framingham.csv',sep = ',')
a.首先構(gòu)建一個(gè)簡(jiǎn)單模型
simple<- decision_curve(chdfate~scl,data= Data,
family = binomial(link ='logit'),
thresholds= seq(0,1, by = 0.01),
confidence.intervals = 0.95,
study.design = 'case-control',
population.prevalence = 0.3)
## Warning in decision_curve(chdfate ~ scl, data = Data, family = binomial(link =
## "logit"), : 33 observation(s) with missing data removed
## Calculating net benefit curves for case-control data. All calculations are done conditional on the outcome prevalence provided.
decision_curve()函數(shù)中,threshold設(shè)置橫坐標(biāo)閾概率的范圍融虽,一般是0-1涣达;但如果有某種具體情況肮疗,大家一致認(rèn)為閾概率達(dá)到某個(gè)值以上践险,比如40%犹赖,則必須采取干預(yù)措施试浙,那么0.4以后的研究就沒什么意義了董瞻,可以設(shè)為0-0.4。by是指每隔多少距離計(jì)算一個(gè)數(shù)據(jù)點(diǎn)田巴。Study.design可設(shè)置研究類型钠糊,是“cohort”還是“case-control”,當(dāng)研究類型為“case-control”時(shí)壹哺,還應(yīng)加上患病率population.prevalance參數(shù)抄伍,因?yàn)樵凇癱ase-control”研究中無(wú)法計(jì)算患病率,需要事先提供管宵。
b.再構(gòu)建一個(gè)復(fù)雜logistics回歸模型complex
complex<-decision_curve(chdfate~scl+sbp+dbp+age+bmi+sex,
data = Data,family = binomial(link ='logit'),
thresholds = seq(0,1, by = 0.01),
confidence.intervals= 0.95,
study.design = 'case-control',
population.prevalence= 0.3)
## Warning in decision_curve(chdfate ~ scl + sbp + dbp + age + bmi + sex, data =
## Data, : 41 observation(s) with missing data removed
## Calculating net benefit curves for case-control data. All calculations are done conditional on the outcome prevalence provided.
## Note: The data provided is used to both fit a prediction model and to estimate the respective decision curve. This may cause bias in decision curve estimates leading to over-confidence in model performance.
c.把simple和complex兩個(gè)模型合成一個(gè)list
List<- list(simple,complex)
plot_decision_curve(List,
curve.names=c('simple','complex'),
cost.benefit.axis =FALSE,col= c('red','blue'),
confidence.intervals=FALSE,
standardize = FALSE)
## Note: When multiple decision curves are plotted, decision curves for 'All' are calculated using the prevalence from the first DecisionCurve object in the list provided.
圖表解讀:從上圖可見在閾值在0.1~0.5大致范圍內(nèi)截珍,complex模型的凈受益率都比simple模型高。
plot_decision_curve() 函數(shù)的對(duì)象就是前面定義的List箩朴,如果只畫一條曲線岗喉,直接把List替換成simple或complex即可。curve.names是圖例上每條曲線的名字炸庞,書寫順序要跟上面合成list時(shí)一致钱床。cost.benefit.axis是另外附加的一條橫坐標(biāo)軸,損失收益比埠居,默認(rèn)值是TRUE查牌。col設(shè)置顏色事期。confidence.intervals設(shè)置是否畫出曲線的置信區(qū)間,standardize設(shè)置是否對(duì)凈受益率(NB)使用患病率進(jìn)行校正纸颜。
# summary(complex,measure= 'NB') #結(jié)果很冗長(zhǎng)兽泣!
Note: 查看complex模型曲線上的各數(shù)據(jù)點(diǎn)。NB也可以改成sNB胁孙,表示經(jīng)過(guò)患病率的標(biāo)準(zhǔn)化唠倦。
1.2 繪制臨床影響曲線(Clinical Impact Curve)
使用simple模型預(yù)測(cè)1000人的風(fēng)險(xiǎn)分層,顯示“損失:受益”坐標(biāo)軸浊洞,賦以8個(gè)刻度牵敷,顯示置信區(qū)間
plot_clinical_impact(simple,population.size= 1000,
cost.benefit.axis = T,
n.cost.benefits= 8,
col =c('red','blue'),
confidence.intervals= T,
ylim=c(0,1000),
legend.position="topright")
使用complex模型預(yù)測(cè)1000人的風(fēng)險(xiǎn)分層,顯示“損失:受益”坐標(biāo)軸法希,賦以8個(gè)刻度枷餐,顯示置信區(qū)間
plot_clinical_impact(complex,population.size= 1000,
cost.benefit.axis = T,
n.cost.benefits= 8,col =c('red','blue'),
confidence.intervals=T,
ylim=c(0,1000),
legend.position="topright")
圖表解讀:紅色曲線(Number high risk)表示,在各個(gè)閾概率下苫亦,被simple模型(圖3.)或complex模型(圖4.)劃分為陽(yáng)性(高風(fēng)險(xiǎn))的人數(shù)毛肋;藍(lán)色曲線(Number high risk with outcome)為各個(gè)閾概率下真陽(yáng)性的人數(shù)。
-
DCA算法原理解析
它相當(dāng)于在回歸預(yù)測(cè)分析的基礎(chǔ)上屋剑,引入了損失函數(shù)润匙。先簡(jiǎn)單定義幾個(gè)概念:
P:給真陽(yáng)性患者施加干預(yù)的受益值(比如用某生化指標(biāo)預(yù)測(cè)某患者有癌癥,實(shí)際也有唉匾,予以活檢孕讳,達(dá)到了確診的目的);
L:給假陽(yáng)性患者施加干預(yù)的損失值(比如預(yù)測(cè)有癌癥巍膘,給做了活檢厂财,原來(lái)只是個(gè)增生,白白受了一刀)峡懈;
Pi:患者i有癌癥的概率璃饱,當(dāng)Pi > Pt時(shí)為陽(yáng)性,給予干預(yù)肪康。
所以較為合理的干預(yù)的時(shí)機(jī)是荚恶,當(dāng)且僅當(dāng)Pi × P >(1 – Pi) × L
,即預(yù)期的受益高于預(yù)期的損失磷支。推導(dǎo)一下可得谒撼,Pi > L / ( P + L )
即為合理的干預(yù)時(shí)機(jī),于是把L / ( P + L )
定義為Pi的閾值雾狈,即Pt廓潜。
參考資料