Rnbeads包差異甲基化分析

愚人節(jié)快樂(lè)户敬。

導(dǎo)入數(shù)據(jù),設(shè)置選項(xiàng)

hESCs vs?hiPSCs

樣本注釋文件

注釋文件路徑

告訴軟件測(cè)序數(shù)據(jù)是哪個(gè)平臺(tái)的數(shù)據(jù)

測(cè)序數(shù)據(jù)路徑(450K:idat文件)

選擇option profile,即設(shè)置處理數(shù)據(jù)的預(yù)設(shè)值季率,以便分析在合理的時(shí)間內(nèi)運(yùn)行派近。

選擇分析的名字

選擇分析哪個(gè)區(qū)域的甲基化水平

選擇identifiers.column對(duì)應(yīng)列腾节,每個(gè)identifiers.column對(duì)應(yīng)一個(gè)特定的樣本

選擇配色方案

勾選移除性染色體上的探針

勾選bmiq歸一化方法

選擇需要用來(lái)比對(duì)的組別

質(zhì)控

質(zhì)控結(jié)果
質(zhì)控過(guò)程的一些選項(xiàng)設(shè)置

前處理

前處理結(jié)果
移除14262個(gè)探針
前處理設(shè)置的選項(xiàng)
歸一化方法:BMIQ

這里的歸一化和methylkit中的歸一化概念有所不同,這里的歸一化是對(duì)一個(gè)樣本中所有的位點(diǎn)進(jìn)行歸一化崭捍,而methylkit中的歸一化是對(duì)覆蓋度進(jìn)行歸一化尸折。

同時(shí)methylkit對(duì)批次效應(yīng)進(jìn)行了校正。

中間文件格式

生成track或者table(bed)文件

Track Hub data was generated for export to various genome browsers. Note that you need a server that is capable of serving the tracks to the genome browser via URL. Below, instructions are provided to view the tracks in the UCSC genome browser. Of course the files can also be viewed in other browsers such as the?Ensembl genome browser.

Track Hub數(shù)據(jù)被生成以導(dǎo)出到各種基因組瀏覽器殷蛇。

Convert the bed/bedGraph files contained in the bed/bedGraph directories (see table below) attached to this report. You can use the UCSC tool?bedTobigBed/bedGraphTobigWig?for this task. More information (e.g. where to obtain the tool) on how to convert can be found?here. Make sure the resulting bigBed/bigWig files are moved to the corresponding UCSC track hub directory (see table(s) below).

可以使用UCSC工具將bed轉(zhuǎn)換為bigbed实夹,或者將bedGraph轉(zhuǎn)為bigWig。

450k bed文件 倒數(shù)第二列是甲基化水平
RRBS bed文件
WGBS bed文件

Bed files for each sample contain the locations of methylation sites and regions the methylation level (in the score column).

探索性分析

探索性分析結(jié)果
探索性分析設(shè)置選項(xiàng)

Dimension reduction is used to visually inspect the dataset for a strong signal in the methylation values that is related to samples' clinical or batch processing annotation. RnBeads implements two methods for dimension reduction - principal component analysis (PCA) and multidimensional scaling (MDS).

降維用于直觀地檢查數(shù)據(jù)集甲基化值中的強(qiáng)信號(hào)粒梦,該信號(hào)與樣本的臨床(細(xì)胞類型等)或批處理(批次效應(yīng))注釋相關(guān)亮航。RnBeads實(shí)現(xiàn)了兩種降維方法——主成分分析(PCA)和多維標(biāo)度(MDS)

MDS 根據(jù)樣本組別分
MDS 根據(jù)性別分
PCA圖 根據(jù)樣本組別分

批次效應(yīng)

In this section, different properties of the dataset are tested for significant associations. The properties can include sample coordinates in the principal component space, phenotype traits and intensities of control probes. The tests used to calculate a p-value given two properties depend on the essence of the data:

If both properties contain categorical data (e.g. tissue type and sample processing date), the test of choice is a two-sided Fisher's exact test.

If both properties contain numerical data (e.g. coordinates in the first principal component and age of individual), the correlation coefficient between the traits is computed. A p-value is estimated using permutation tests with 10000 permutations.

If property?A?is categorical and property?B?contains numeric data, p-value for association is calculated by comparing the values of?B?for the different categories in?A. The test of choice is a two-sided Wilcoxon rank sum test (when?A?defines two categories) or a Kruskal-Wallis one-way analysis of variance (when?A?separates the samples into three or more categories).

Note that the p-values presented in this report are?not corrected?for multiple testing.

Associations between Principal Components and Traits

The computed sample coordinates in the principal component space were tested for association with the available traits.

差異分析

差異分析結(jié)果
差異分析使用的參數(shù)

In the following anlyses, p-values on the site level were computed using the?limma?method. I.e. hierarchical linear models from the?limma?package were employed and fitted using an empirical Bayes approach on derived M-values.

多層線性模型計(jì)算p值

基于衍生m值的經(jīng)驗(yàn)貝葉斯方法進(jìn)行擬合

Differential methylation on the site level was computed based on a variety of metrics. Of particular interest for the following plots and analyses are the following quantities for each site: a) the difference in mean methylation levels of the two groups being compared, b) the quotient in mean methylation and c) a statistical test (limma or t-test depending on the settings) assessing whether the methylation values in the two groups originate from distinct distributions. Additionally each site was assigned a rank based on each of these three criteria. A combined rank is computed as the maximum (i.e. worst) rank among the three ranks. The smaller the combined rank for a site, the more evidence for differential methylation it exhibits. This section includes scatterplots of the site group means as well as volcano plots of each pairwise comparison colored according to the combined ranks or p-values of a given site.

根據(jù)均值差異匀们,均值比例以及l(fā)imms統(tǒng)計(jì)檢驗(yàn)的結(jié)果來(lái)對(duì)差異的甲基化位點(diǎn)進(jìn)行排序缴淋,排序的數(shù)字越小表示這個(gè)位點(diǎn)越顯著地差異甲基化。

前1000個(gè)最顯著的位點(diǎn)

我們也可以下載csv文件泄朴,里面包含:

id: site id

Chromosome: chromosome of the site

Start: start coordinate of the site

Strand: strand of the site

mean.g1,mean.g2: (where g1 and g2 is replaced by the respective group names in the table) mean methylation in each of the two groups

mean.diff: difference in methylation means between the two groups: mean.g1-mean.g2. In case of paired analysis, it is the mean of the pairwise differences.

mean.quot.log2: log2 of the quotient in methylation: log2((mean.g1+epsilon)/(mean.g2+epsilon)), where epsilon:=0.01. In case of paired analysis, it is the mean of the pairwise quotients.

diffmeth.p.val: p-value obtained from linear models employed in the limma package (or alternatively from a two-sided Welch t-test; which type of p-value is computed is specified in the differential.site.test.method option).

diffmeth.p.adj.fdr: FDR adjusted p-value of all sites

Differential methylation on the region level was computed based on a variety of metrics. Of particular interest for the following plots and analyses are the following quantities for each region: the mean difference in means across all sites in a region of the two groups being compared and the mean of quotients in mean methylation as well as a combined p-value calculated from all site p-values in the region [1]. Additionally each region was assigned a rank based on each of these three criteria. A combined rank is computed as the maximum (i.e. worst) value among the three ranks. The smaller the combined rank for a region, the more evidence for differential methylation it exhibits. Regions were defined based on the region types specified in the analysis. This section includes scatterplots of the region group means as well as volcano plots of each pairwise comparison colored according to the combined rank of a given region.

前1000個(gè)顯著的啟動(dòng)子區(qū)域

Rnbeads數(shù)據(jù)資源

數(shù)據(jù)資源的整合

看了以下Rnbeads還有針對(duì)不同甲基化數(shù)據(jù)的整合重抖,并且也對(duì)這些數(shù)據(jù)進(jìn)行了分析。具體的分析結(jié)果都可以看到祖灰。

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末钟沛,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子夫植,更是在濱河造成了極大的恐慌讹剔,老刑警劉巖油讯,帶你破解...
    沈念sama閱讀 219,188評(píng)論 6 508
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場(chǎng)離奇詭異延欠,居然都是意外死亡陌兑,警方通過(guò)查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 93,464評(píng)論 3 395
  • 文/潘曉璐 我一進(jìn)店門由捎,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái)兔综,“玉大人,你說(shuō)我怎么就攤上這事狞玛∪沓郏” “怎么了?”我有些...
    開(kāi)封第一講書(shū)人閱讀 165,562評(píng)論 0 356
  • 文/不壞的土叔 我叫張陵心肪,是天一觀的道長(zhǎng)锭亏。 經(jīng)常有香客問(wèn)我,道長(zhǎng)硬鞍,這世上最難降的妖魔是什么慧瘤? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 58,893評(píng)論 1 295
  • 正文 為了忘掉前任,我火速辦了婚禮固该,結(jié)果婚禮上锅减,老公的妹妹穿的比我還像新娘。我一直安慰自己伐坏,他們只是感情好怔匣,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,917評(píng)論 6 392
  • 文/花漫 我一把揭開(kāi)白布。 她就那樣靜靜地躺著桦沉,像睡著了一般每瞒。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上永部,一...
    開(kāi)封第一講書(shū)人閱讀 51,708評(píng)論 1 305
  • 那天独泞,我揣著相機(jī)與錄音,去河邊找鬼苔埋。 笑死懦砂,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的组橄。 我是一名探鬼主播荞膘,決...
    沈念sama閱讀 40,430評(píng)論 3 420
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼玉工!你這毒婦竟也來(lái)了羽资?” 一聲冷哼從身側(cè)響起,我...
    開(kāi)封第一講書(shū)人閱讀 39,342評(píng)論 0 276
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤遵班,失蹤者是張志新(化名)和其女友劉穎屠升,沒(méi)想到半個(gè)月后潮改,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 45,801評(píng)論 1 317
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡腹暖,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,976評(píng)論 3 337
  • 正文 我和宋清朗相戀三年汇在,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片脏答。...
    茶點(diǎn)故事閱讀 40,115評(píng)論 1 351
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡糕殉,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出殖告,到底是詐尸還是另有隱情阿蝶,我是刑警寧澤,帶...
    沈念sama閱讀 35,804評(píng)論 5 346
  • 正文 年R本政府宣布黄绩,位于F島的核電站羡洁,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏宝与。R本人自食惡果不足惜焚廊,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,458評(píng)論 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望习劫。 院中可真熱鬧,春花似錦嚼隘、人聲如沸诽里。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 32,008評(píng)論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)谤狡。三九已至,卻和暖如春卧檐,著一層夾襖步出監(jiān)牢的瞬間墓懂,已是汗流浹背。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 33,135評(píng)論 1 272
  • 我被黑心中介騙來(lái)泰國(guó)打工霉囚, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留捕仔,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 48,365評(píng)論 3 373
  • 正文 我出身青樓盈罐,卻偏偏與公主長(zhǎng)得像榜跌,于是被迫代替她去往敵國(guó)和親。 傳聞我的和親對(duì)象是個(gè)殘疾皇子盅粪,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 45,055評(píng)論 2 355

推薦閱讀更多精彩內(nèi)容