Java解讀-ThreadLocal詳解與應(yīng)用

ThreadLocal概念

ThreadLocal 字面意思來看有點像“線程的本地實現(xiàn)版本”掰茶,實際上真正含義是ThreadLocalVariable(線程本地局部變量),所以把它命名為ThreadLocalVar更加合適。

ThreadLocal 是用來解決共享對象(單個線程內(nèi)共享)的多線程訪問問題的,使用場合主要解決多線程中數(shù)據(jù)因并發(fā)產(chǎn)生不一致問題。

ThreadLocal為每個線程的中并發(fā)訪問的數(shù)據(jù)提供一個副本陈轿,通過訪問副本來運行業(yè)務(wù)荸实,這樣的結(jié)果是耗費了內(nèi)存济丘,但是確避免線程同步所帶來性能消耗棚唆,也減少了線程并發(fā)控制的復(fù)雜度。

只要使用了“池”(線程池冗栗、連接池)演顾,再使用ThreadLocal時,尤其需要注意隅居,每個線程在使用ThreadLocal的時候钠至,必須對ThreadLocal執(zhí)行一次clear操作,避免出現(xiàn)線程污染問題胎源,這也是最常踩的坑(近期我們就遇到過2次類似情況)棕洋。

ThreadLocal與多線程

ThreadLocal和Synchonized都用于解決多線程并發(fā)訪問問題。但是ThreadLocal與synchronized有本質(zhì)的區(qū)別乒融。synchronized是利用鎖的機制掰盘,使變量或代碼塊在某一時該只能被一個線程訪問。而ThreadLocal為每一個線程都提供了變量的副本赞季,使得每個線程在某一時間訪問到的并不是同一個對象愧捕,這樣就隔離了多個線程對數(shù)據(jù)的數(shù)據(jù)共享。而Synchronized卻正好相反申钩,它用于在多個線程間通信時能夠獲得數(shù)據(jù)共享次绘。

Synchronized用于線程間的數(shù)據(jù)共享,而ThreadLocal則用于線程間的數(shù)據(jù)隔離撒遣,它們處理不同的問題域邮偎。

對于多線程資源共享的問題,同步機制采用了“以時間換空間”的方式义黎,而ThreadLocal采用了“以空間換時間”的方式禾进。前者僅提供一份變量,讓不同的線程單線程排隊等待訪問廉涕,而后者為每一個線程都提供了一份變量泻云,因此可以互不影響的同時訪問。

ThreadLocal導(dǎo)致的內(nèi)存泄露

ThreadLocal 的生命周期和它相應(yīng)的線程直接關(guān)聯(lián)狐蜕。如果線程被終止并且被垃圾回收器收集宠纯,它相應(yīng)的ThreadLocal 變量也將會被回收。

內(nèi)存問題主要發(fā)生在當(dāng)ThreadLocal變量使用在運行在應(yīng)用服務(wù)器上的Java EE應(yīng)用程序里邊時层释。應(yīng)用服務(wù)器通過使用線程池來管理線程以保證資源安全和提高性能婆瓜。(參見Tomcat HTTP conncector配置為例)。

例如贡羔,一個HttpServletRequest發(fā)送到應(yīng)用服務(wù)器的ServletEngine廉白,一個空閑的線程將會從線程池中取出并且和servlet的應(yīng)用邏輯進行連接。如果這個servlet或者它調(diào)用的Java類正在使用ThreadLocal變量治力,這些變量將會和當(dāng)前的工作線程連接蒙秒。如果servlet完成并將相應(yīng)發(fā)送給客戶端,那么與之連接的線程會被返回到線程池中宵统,以便用來處理其他的請求晕讲。這意味著線程對象及其相關(guān)聯(lián)的ThreadLocal變量沒有被垃圾回收器收集,因為其線程對象還存在著马澈。

根據(jù)池中的線程數(shù)量(在運行環(huán)境中大于100個線程是正常的)以及ThreadLocal變量中對象的大小瓢省,可能會發(fā)生致命的內(nèi)存問題。例如對線程池中的200個線程進行配置以及將ThreadLocal變量的大小設(shè)置為5MB痊班,這將會導(dǎo)致有1GB的堆空間被這些變量所占用勤婚。這將會導(dǎo)致一個GC的開銷并且可能會由于OutOfMemoryError導(dǎo)致JVM崩潰。

ThreadLocal應(yīng)用實例

*** servlet中保存上下文用戶信息 ***

abstract class ThreadContext {
    private static final Logger log = LoggerFactory.getLogger(ThreadContext.class);
    private static final ThreadLocal<Map<Object, Object>> resources = new InheritableThreadLocalMap<Map<Object, Object>>();

    protected ThreadContext() {
    }

    public static Map<Object, Object> getResources() {
        return resources != null ? new HashMap<Object, Object>(resources.get()) : null;
    }

    public static void setResources(Map<Object, Object> newResources) {
        if (CollectionUtils.isEmpty(newResources)) {
            return;
        }
        resources.get().clear();
        resources.get().putAll(newResources);
    }

    private static Object getValue(Object key) {
        return resources.get().get(key);
    }

    public static Object get(Object key) {
        if (log.isTraceEnabled()) {
            String msg = "get() - in thread [" + Thread.currentThread().getName() + "]";
            log.trace(msg);
        }

        Object value = getValue(key);
        if ((value != null) && log.isTraceEnabled()) {
            String msg = "Retrieved value of type [" + value.getClass().getName() + "] for key [" +
                    key + "] " + "bound to thread [" + Thread.currentThread().getName() + "]";
            log.trace(msg);
        }
        return value;
    }

    public static void put(Object key, Object value) {
        if (key == null) {
            throw new IllegalArgumentException("key cannot be null");
        }

        if (value == null) {
            remove(key);
            return;
        }

        resources.get().put(key, value);

        if (log.isTraceEnabled()) {
            String msg = "Bound value of type [" + value.getClass().getName() + "] for key [" +
                    key + "] to thread " + "[" + Thread.currentThread().getName() + "]";
            log.trace(msg);
        }
    }

    public static Object remove(Object key) {
        Object value = resources.get().remove(key);

        if ((value != null) && log.isTraceEnabled()) {
            String msg = "Removed value of type [" + value.getClass().getName() + "] for key [" +
                    key + "]" + "from thread [" + Thread.currentThread().getName() + "]";
            log.trace(msg);
        }

        return value;
    }

    public static void remove() {
        resources.remove();
    }

    private static final class InheritableThreadLocalMap<T extends Map<Object, Object>> extends InheritableThreadLocal<Map<Object, Object>> {
        protected Map<Object, Object> initialValue() {
            return new HashMap<Object, Object>();
        }

        protected Map<Object, Object> childValue(Map<Object, Object> parentValue) {
            if (parentValue != null) {
                return (Map<Object, Object>) ((HashMap<Object, Object>) parentValue).clone();
            } else {
                return null;
            }
        }
    }
}

實現(xiàn)數(shù)據(jù)庫連接Connection對象線程隔離

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;

public class ConnectionManager {

        private static ThreadLocal<Connection> connectionHolder = new ThreadLocal<Connection>() {
        @Override
        protected Connection initialValue() {
            Connection conn = null;
            try {
                conn = DriverManager.getConnection(
                        "jdbc:mysql://localhost:3306/test", "username",
                        "password");
            } catch (SQLException e) {
                e.printStackTrace();
            }
            return conn;
        }
    };

    public static Connection getConnection() {
        return connectionHolder.get();
    }

    public static void setConnection(Connection conn) {
        connectionHolder.set(conn);
    }
}

*** hibernate中典型的ThreadLocal的應(yīng)用:***

private static final ThreadLocal threadSession = new ThreadLocal();  
  
public static Session getSession() throws InfrastructureException {  
    Session s = (Session) threadSession.get();  
    try {  
        if (s == null) {  
            s = getSessionFactory().openSession();  
            threadSession.set(s);  
        }  
    } catch (HibernateException ex) {  
        throw new InfrastructureException(ex);  
    }  
    return s;  
}  

*** Spring多數(shù)據(jù)源實現(xiàn)中的應(yīng)用***

public class MyDataSource extends AbstractRoutingDataSource {

    private static final ThreadLocal<String> dataSourceKey = new ThreadLocal<String>();

    public static void setDataSourceKey(String dataSource) {
        dataSourceKey.set(dataSource);
    }

    protected Object determineCurrentLookupKey() {
        String dsName = dataSourceKey.get();
        dataSourceKey.remove(); //這里需要注意的時涤伐,每次我們返回當(dāng)前數(shù)據(jù)源的值得時候都需要移除ThreadLocal的值馒胆,這是為了避免同一線程上一次方法調(diào)用對之后調(diào)用的影響
        return dsName;
    }

}

ThreadLocal實現(xiàn)原理

代碼細節(jié)就不說明了缨称,粘出來有興趣的可以閱讀以下,以下為JDK7版本的實現(xiàn)祝迂。

/*
 * Copyright (c) 1997, 2007, Oracle and/or its affiliates. All rights reserved.
 * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.

 */

package java.lang;
import java.lang.ref.*;
import java.util.concurrent.atomic.AtomicInteger;

/**
 * This class provides thread-local variables.  These variables differ from
 * their normal counterparts in that each thread that accesses one (via its
 * <tt>get</tt> or <tt>set</tt> method) has its own, independently initialized
 * copy of the variable.  <tt>ThreadLocal</tt> instances are typically private
 * static fields in classes that wish to associate state with a thread (e.g.,
 * a user ID or Transaction ID).
 *
 * <p>For example, the class below generates unique identifiers local to each
 * thread.
 * A thread's id is assigned the first time it invokes <tt>ThreadId.get()</tt>
 * and remains unchanged on subsequent calls.
 * <pre>
 * import java.util.concurrent.atomic.AtomicInteger;
 *
 * public class ThreadId {
 *     // Atomic integer containing the next thread ID to be assigned
 *     private static final AtomicInteger nextId = new AtomicInteger(0);
 *
 *     // Thread local variable containing each thread's ID
 *     private static final ThreadLocal<Integer> threadId =
 *         new ThreadLocal<Integer>() {
 *             @Override protected Integer initialValue() {
 *                 return nextId.getAndIncrement();
 *         }
 *     };
 *
 *     // Returns the current thread's unique ID, assigning it if necessary
 *     public static int get() {
 *         return threadId.get();
 *     }
 * }
 * </pre>
 * <p>Each thread holds an implicit reference to its copy of a thread-local
 * variable as long as the thread is alive and the <tt>ThreadLocal</tt>
 * instance is accessible; after a thread goes away, all of its copies of
 * thread-local instances are subject to garbage collection (unless other
 * references to these copies exist).
 *
 * @author  Josh Bloch and Doug Lea
 * @since   1.2
 */
public class ThreadLocal<T> {
    /**
     * ThreadLocals rely on per-thread linear-probe hash maps attached
     * to each thread (Thread.threadLocals and
     * inheritableThreadLocals).  The ThreadLocal objects act as keys,
     * searched via threadLocalHashCode.  This is a custom hash code
     * (useful only within ThreadLocalMaps) that eliminates collisions
     * in the common case where consecutively constructed ThreadLocals
     * are used by the same threads, while remaining well-behaved in
     * less common cases.
     */
    private final int threadLocalHashCode = nextHashCode();

    /**
     * The next hash code to be given out. Updated atomically. Starts at
     * zero.
     */
    private static AtomicInteger nextHashCode =
        new AtomicInteger();

    /**
     * The difference between successively generated hash codes - turns
     * implicit sequential thread-local IDs into near-optimally spread
     * multiplicative hash values for power-of-two-sized tables.
     */
    private static final int HASH_INCREMENT = 0x61c88647;

    /**
     * Returns the next hash code.
     */
    private static int nextHashCode() {
        return nextHashCode.getAndAdd(HASH_INCREMENT);
    }

    /**
     * Returns the current thread's "initial value" for this
     * thread-local variable.  This method will be invoked the first
     * time a thread accesses the variable with the {@link #get}
     * method, unless the thread previously invoked the {@link #set}
     * method, in which case the <tt>initialValue</tt> method will not
     * be invoked for the thread.  Normally, this method is invoked at
     * most once per thread, but it may be invoked again in case of
     * subsequent invocations of {@link #remove} followed by {@link #get}.
     *
     * <p>This implementation simply returns <tt>null</tt>; if the
     * programmer desires thread-local variables to have an initial
     * value other than <tt>null</tt>, <tt>ThreadLocal</tt> must be
     * subclassed, and this method overridden.  Typically, an
     * anonymous inner class will be used.
     *
     * @return the initial value for this thread-local
     */
    protected T initialValue() {
        return null;
    }

    /**
     * Creates a thread local variable.
     */
    public ThreadLocal() {
    }

    /**
     * Returns the value in the current thread's copy of this
     * thread-local variable.  If the variable has no value for the
     * current thread, it is first initialized to the value returned
     * by an invocation of the {@link #initialValue} method.
     *
     * @return the current thread's value of this thread-local
     */
    public T get() {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null) {
            ThreadLocalMap.Entry e = map.getEntry(this);
            if (e != null)
                return (T)e.value;
        }
        return setInitialValue();
    }

    /**
     * Variant of set() to establish initialValue. Used instead
     * of set() in case user has overridden the set() method.
     *
     * @return the initial value
     */
    private T setInitialValue() {
        T value = initialValue();
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
        return value;
    }

    /**
     * Sets the current thread's copy of this thread-local variable
     * to the specified value.  Most subclasses will have no need to
     * override this method, relying solely on the {@link #initialValue}
     * method to set the values of thread-locals.
     *
     * @param value the value to be stored in the current thread's copy of
     *        this thread-local.
     */
    public void set(T value) {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
    }

    /**
     * Removes the current thread's value for this thread-local
     * variable.  If this thread-local variable is subsequently
     * {@linkplain #get read} by the current thread, its value will be
     * reinitialized by invoking its {@link #initialValue} method,
     * unless its value is {@linkplain #set set} by the current thread
     * in the interim.  This may result in multiple invocations of the
     * <tt>initialValue</tt> method in the current thread.
     *
     * @since 1.5
     */
     public void remove() {
         ThreadLocalMap m = getMap(Thread.currentThread());
         if (m != null)
             m.remove(this);
     }

    /**
     * Get the map associated with a ThreadLocal. Overridden in
     * InheritableThreadLocal.
     *
     * @param  t the current thread
     * @return the map
     */
    ThreadLocalMap getMap(Thread t) {
        return t.threadLocals;
    }

    /**
     * Create the map associated with a ThreadLocal. Overridden in
     * InheritableThreadLocal.
     *
     * @param t the current thread
     * @param firstValue value for the initial entry of the map
     * @param map the map to store.
     */
    void createMap(Thread t, T firstValue) {
        t.threadLocals = new ThreadLocalMap(this, firstValue);
    }

    /**
     * Factory method to create map of inherited thread locals.
     * Designed to be called only from Thread constructor.
     *
     * @param  parentMap the map associated with parent thread
     * @return a map containing the parent's inheritable bindings
     */
    static ThreadLocalMap createInheritedMap(ThreadLocalMap parentMap) {
        return new ThreadLocalMap(parentMap);
    }

    /**
     * Method childValue is visibly defined in subclass
     * InheritableThreadLocal, but is internally defined here for the
     * sake of providing createInheritedMap factory method without
     * needing to subclass the map class in InheritableThreadLocal.
     * This technique is preferable to the alternative of embedding
     * instanceof tests in methods.
     */
    T childValue(T parentValue) {
        throw new UnsupportedOperationException();
    }

    /**
     * ThreadLocalMap is a customized hash map suitable only for
     * maintaining thread local values. No operations are exported
     * outside of the ThreadLocal class. The class is package private to
     * allow declaration of fields in class Thread.  To help deal with
     * very large and long-lived usages, the hash table entries use
     * WeakReferences for keys. However, since reference queues are not
     * used, stale entries are guaranteed to be removed only when
     * the table starts running out of space.
     */
    static class ThreadLocalMap {

        /**
         * The entries in this hash map extend WeakReference, using
         * its main ref field as the key (which is always a
         * ThreadLocal object).  Note that null keys (i.e. entry.get()
         * == null) mean that the key is no longer referenced, so the
         * entry can be expunged from table.  Such entries are referred to
         * as "stale entries" in the code that follows.
         */
        static class Entry extends WeakReference<ThreadLocal> {
            /** The value associated with this ThreadLocal. */
            Object value;

            Entry(ThreadLocal k, Object v) {
                super(k);
                value = v;
            }
        }

        /**
         * The initial capacity -- MUST be a power of two.
         */
        private static final int INITIAL_CAPACITY = 16;

        /**
         * The table, resized as necessary.
         * table.length MUST always be a power of two.
         */
        private Entry[] table;

        /**
         * The number of entries in the table.
         */
        private int size = 0;

        /**
         * The next size value at which to resize.
         */
        private int threshold; // Default to 0

        /**
         * Set the resize threshold to maintain at worst a 2/3 load factor.
         */
        private void setThreshold(int len) {
            threshold = len * 2 / 3;
        }

        /**
         * Increment i modulo len.
         */
        private static int nextIndex(int i, int len) {
            return ((i + 1 < len) ? i + 1 : 0);
        }

        /**
         * Decrement i modulo len.
         */
        private static int prevIndex(int i, int len) {
            return ((i - 1 >= 0) ? i - 1 : len - 1);
        }

        /**
         * Construct a new map initially containing (firstKey, firstValue).
         * ThreadLocalMaps are constructed lazily, so we only create
         * one when we have at least one entry to put in it.
         */
        ThreadLocalMap(ThreadLocal firstKey, Object firstValue) {
            table = new Entry[INITIAL_CAPACITY];
            int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
            table[i] = new Entry(firstKey, firstValue);
            size = 1;
            setThreshold(INITIAL_CAPACITY);
        }

        /**
         * Construct a new map including all Inheritable ThreadLocals
         * from given parent map. Called only by createInheritedMap.
         *
         * @param parentMap the map associated with parent thread.
         */
        private ThreadLocalMap(ThreadLocalMap parentMap) {
            Entry[] parentTable = parentMap.table;
            int len = parentTable.length;
            setThreshold(len);
            table = new Entry[len];

            for (int j = 0; j < len; j++) {
                Entry e = parentTable[j];
                if (e != null) {
                    ThreadLocal key = e.get();
                    if (key != null) {
                        Object value = key.childValue(e.value);
                        Entry c = new Entry(key, value);
                        int h = key.threadLocalHashCode & (len - 1);
                        while (table[h] != null)
                            h = nextIndex(h, len);
                        table[h] = c;
                        size++;
                    }
                }
            }
        }

        /**
         * Get the entry associated with key.  This method
         * itself handles only the fast path: a direct hit of existing
         * key. It otherwise relays to getEntryAfterMiss.  This is
         * designed to maximize performance for direct hits, in part
         * by making this method readily inlinable.
         *
         * @param  key the thread local object
         * @return the entry associated with key, or null if no such
         */
        private Entry getEntry(ThreadLocal key) {
            int i = key.threadLocalHashCode & (table.length - 1);
            Entry e = table[i];
            if (e != null && e.get() == key)
                return e;
            else
                return getEntryAfterMiss(key, i, e);
        }

        /**
         * Version of getEntry method for use when key is not found in
         * its direct hash slot.
         *
         * @param  key the thread local object
         * @param  i the table index for key's hash code
         * @param  e the entry at table[i]
         * @return the entry associated with key, or null if no such
         */
        private Entry getEntryAfterMiss(ThreadLocal key, int i, Entry e) {
            Entry[] tab = table;
            int len = tab.length;

            while (e != null) {
                ThreadLocal k = e.get();
                if (k == key)
                    return e;
                if (k == null)
                    expungeStaleEntry(i);
                else
                    i = nextIndex(i, len);
                e = tab[i];
            }
            return null;
        }

        /**
         * Set the value associated with key.
         *
         * @param key the thread local object
         * @param value the value to be set
         */
        private void set(ThreadLocal key, Object value) {

            // We don't use a fast path as with get() because it is at
            // least as common to use set() to create new entries as
            // it is to replace existing ones, in which case, a fast
            // path would fail more often than not.

            Entry[] tab = table;
            int len = tab.length;
            int i = key.threadLocalHashCode & (len-1);

            for (Entry e = tab[i];
                 e != null;
                 e = tab[i = nextIndex(i, len)]) {
                ThreadLocal k = e.get();

                if (k == key) {
                    e.value = value;
                    return;
                }

                if (k == null) {
                    replaceStaleEntry(key, value, i);
                    return;
                }
            }

            tab[i] = new Entry(key, value);
            int sz = ++size;
            if (!cleanSomeSlots(i, sz) && sz >= threshold)
                rehash();
        }

        /**
         * Remove the entry for key.
         */
        private void remove(ThreadLocal key) {
            Entry[] tab = table;
            int len = tab.length;
            int i = key.threadLocalHashCode & (len-1);
            for (Entry e = tab[i];
                 e != null;
                 e = tab[i = nextIndex(i, len)]) {
                if (e.get() == key) {
                    e.clear();
                    expungeStaleEntry(i);
                    return;
                }
            }
        }

        /**
         * Replace a stale entry encountered during a set operation
         * with an entry for the specified key.  The value passed in
         * the value parameter is stored in the entry, whether or not
         * an entry already exists for the specified key.
         *
         * As a side effect, this method expunges all stale entries in the
         * "run" containing the stale entry.  (A run is a sequence of entries
         * between two null slots.)
         *
         * @param  key the key
         * @param  value the value to be associated with key
         * @param  staleSlot index of the first stale entry encountered while
         *         searching for key.
         */
        private void replaceStaleEntry(ThreadLocal key, Object value,
                                       int staleSlot) {
            Entry[] tab = table;
            int len = tab.length;
            Entry e;

            // Back up to check for prior stale entry in current run.
            // We clean out whole runs at a time to avoid continual
            // incremental rehashing due to garbage collector freeing
            // up refs in bunches (i.e., whenever the collector runs).
            int slotToExpunge = staleSlot;
            for (int i = prevIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = prevIndex(i, len))
                if (e.get() == null)
                    slotToExpunge = i;

            // Find either the key or trailing null slot of run, whichever
            // occurs first
            for (int i = nextIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = nextIndex(i, len)) {
                ThreadLocal k = e.get();

                // If we find key, then we need to swap it
                // with the stale entry to maintain hash table order.
                // The newly stale slot, or any other stale slot
                // encountered above it, can then be sent to expungeStaleEntry
                // to remove or rehash all of the other entries in run.
                if (k == key) {
                    e.value = value;

                    tab[i] = tab[staleSlot];
                    tab[staleSlot] = e;

                    // Start expunge at preceding stale entry if it exists
                    if (slotToExpunge == staleSlot)
                        slotToExpunge = i;
                    cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
                    return;
                }

                // If we didn't find stale entry on backward scan, the
                // first stale entry seen while scanning for key is the
                // first still present in the run.
                if (k == null && slotToExpunge == staleSlot)
                    slotToExpunge = i;
            }

            // If key not found, put new entry in stale slot
            tab[staleSlot].value = null;
            tab[staleSlot] = new Entry(key, value);

            // If there are any other stale entries in run, expunge them
            if (slotToExpunge != staleSlot)
                cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
        }

        /**
         * Expunge a stale entry by rehashing any possibly colliding entries
         * lying between staleSlot and the next null slot.  This also expunges
         * any other stale entries encountered before the trailing null.  See
         * Knuth, Section 6.4
         *
         * @param staleSlot index of slot known to have null key
         * @return the index of the next null slot after staleSlot
         * (all between staleSlot and this slot will have been checked
         * for expunging).
         */
        private int expungeStaleEntry(int staleSlot) {
            Entry[] tab = table;
            int len = tab.length;

            // expunge entry at staleSlot
            tab[staleSlot].value = null;
            tab[staleSlot] = null;
            size--;

            // Rehash until we encounter null
            Entry e;
            int i;
            for (i = nextIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = nextIndex(i, len)) {
                ThreadLocal k = e.get();
                if (k == null) {
                    e.value = null;
                    tab[i] = null;
                    size--;
                } else {
                    int h = k.threadLocalHashCode & (len - 1);
                    if (h != i) {
                        tab[i] = null;

                        // Unlike Knuth 6.4 Algorithm R, we must scan until
                        // null because multiple entries could have been stale.
                        while (tab[h] != null)
                            h = nextIndex(h, len);
                        tab[h] = e;
                    }
                }
            }
            return i;
        }

        /**
         * Heuristically scan some cells looking for stale entries.
         * This is invoked when either a new element is added, or
         * another stale one has been expunged. It performs a
         * logarithmic number of scans, as a balance between no
         * scanning (fast but retains garbage) and a number of scans
         * proportional to number of elements, that would find all
         * garbage but would cause some insertions to take O(n) time.
         *
         * @param i a position known NOT to hold a stale entry. The
         * scan starts at the element after i.
         *
         * @param n scan control: <tt>log2(n)</tt> cells are scanned,
         * unless a stale entry is found, in which case
         * <tt>log2(table.length)-1</tt> additional cells are scanned.
         * When called from insertions, this parameter is the number
         * of elements, but when from replaceStaleEntry, it is the
         * table length. (Note: all this could be changed to be either
         * more or less aggressive by weighting n instead of just
         * using straight log n. But this version is simple, fast, and
         * seems to work well.)
         *
         * @return true if any stale entries have been removed.
         */
        private boolean cleanSomeSlots(int i, int n) {
            boolean removed = false;
            Entry[] tab = table;
            int len = tab.length;
            do {
                i = nextIndex(i, len);
                Entry e = tab[i];
                if (e != null && e.get() == null) {
                    n = len;
                    removed = true;
                    i = expungeStaleEntry(i);
                }
            } while ( (n >>>= 1) != 0);
            return removed;
        }

        /**
         * Re-pack and/or re-size the table. First scan the entire
         * table removing stale entries. If this doesn't sufficiently
         * shrink the size of the table, double the table size.
         */
        private void rehash() {
            expungeStaleEntries();

            // Use lower threshold for doubling to avoid hysteresis
            if (size >= threshold - threshold / 4)
                resize();
        }

        /**
         * Double the capacity of the table.
         */
        private void resize() {
            Entry[] oldTab = table;
            int oldLen = oldTab.length;
            int newLen = oldLen * 2;
            Entry[] newTab = new Entry[newLen];
            int count = 0;

            for (int j = 0; j < oldLen; ++j) {
                Entry e = oldTab[j];
                if (e != null) {
                    ThreadLocal k = e.get();
                    if (k == null) {
                        e.value = null; // Help the GC
                    } else {
                        int h = k.threadLocalHashCode & (newLen - 1);
                        while (newTab[h] != null)
                            h = nextIndex(h, newLen);
                        newTab[h] = e;
                        count++;
                    }
                }
            }

            setThreshold(newLen);
            size = count;
            table = newTab;
        }

        /**
         * Expunge all stale entries in the table.
         */
        private void expungeStaleEntries() {
            Entry[] tab = table;
            int len = tab.length;
            for (int j = 0; j < len; j++) {
                Entry e = tab[j];
                if (e != null && e.get() == null)
                    expungeStaleEntry(j);
            }
        }
    }
}


個人介紹:

高廣超 :多年一線互聯(lián)網(wǎng)研發(fā)與架構(gòu)設(shè)計經(jīng)驗睦尽,擅長設(shè)計與落地高可用、高性能互聯(lián)網(wǎng)架構(gòu)型雳。目前就職于美團網(wǎng)当凡,負責(zé)核心業(yè)務(wù)研發(fā)工作。

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末纠俭,一起剝皮案震驚了整個濱河市沿量,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌冤荆,老刑警劉巖朴则,帶你破解...
    沈念sama閱讀 219,427評論 6 508
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異匙赞,居然都是意外死亡佛掖,警方通過查閱死者的電腦和手機,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 93,551評論 3 395
  • 文/潘曉璐 我一進店門涌庭,熙熙樓的掌柜王于貴愁眉苦臉地迎上來芥被,“玉大人,你說我怎么就攤上這事坐榆∷┢牵” “怎么了?”我有些...
    開封第一講書人閱讀 165,747評論 0 356
  • 文/不壞的土叔 我叫張陵席镀,是天一觀的道長匹中。 經(jīng)常有香客問我,道長豪诲,這世上最難降的妖魔是什么顶捷? 我笑而不...
    開封第一講書人閱讀 58,939評論 1 295
  • 正文 為了忘掉前任,我火速辦了婚禮屎篱,結(jié)果婚禮上服赎,老公的妹妹穿的比我還像新娘。我一直安慰自己交播,他們只是感情好重虑,可當(dāng)我...
    茶點故事閱讀 67,955評論 6 392
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著秦士,像睡著了一般缺厉。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 51,737評論 1 305
  • 那天提针,我揣著相機與錄音命爬,去河邊找鬼。 笑死辐脖,一個胖子當(dāng)著我的面吹牛遇骑,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播揖曾,決...
    沈念sama閱讀 40,448評論 3 420
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼亥啦!你這毒婦竟也來了炭剪?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 39,352評論 0 276
  • 序言:老撾萬榮一對情侶失蹤翔脱,失蹤者是張志新(化名)和其女友劉穎奴拦,沒想到半個月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體届吁,經(jīng)...
    沈念sama閱讀 45,834評論 1 317
  • 正文 獨居荒郊野嶺守林人離奇死亡错妖,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 37,992評論 3 338
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了疚沐。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片暂氯。...
    茶點故事閱讀 40,133評論 1 351
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖亮蛔,靈堂內(nèi)的尸體忽然破棺而出痴施,到底是詐尸還是另有隱情,我是刑警寧澤究流,帶...
    沈念sama閱讀 35,815評論 5 346
  • 正文 年R本政府宣布辣吃,位于F島的核電站,受9級特大地震影響芬探,放射性物質(zhì)發(fā)生泄漏神得。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點故事閱讀 41,477評論 3 331
  • 文/蒙蒙 一偷仿、第九天 我趴在偏房一處隱蔽的房頂上張望哩簿。 院中可真熱鬧,春花似錦炎疆、人聲如沸卡骂。這莊子的主人今日做“春日...
    開封第一講書人閱讀 32,022評論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽全跨。三九已至,卻和暖如春亿遂,著一層夾襖步出監(jiān)牢的瞬間浓若,已是汗流浹背渺杉。 一陣腳步聲響...
    開封第一講書人閱讀 33,147評論 1 272
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留挪钓,地道東北人是越。 一個月前我還...
    沈念sama閱讀 48,398評論 3 373
  • 正文 我出身青樓,卻偏偏與公主長得像碌上,于是被迫代替她去往敵國和親倚评。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點故事閱讀 45,077評論 2 355

推薦閱讀更多精彩內(nèi)容