10X單細胞(10X空間轉(zhuǎn)錄組)TCR數(shù)據(jù)分析之TCRdist(3)

今天我們繼續(xù)掃盲,學(xué)習(xí)一些基礎(chǔ)的知識和概念甫煞。

Gene enrichment and covariation analysis

其實我們在做TCR分析的時候菇曲,應(yīng)該也是實驗組 + 對照組進行分析,其中做重要的就是我們要尋找實驗組在接受病原刺激后TCR重排選擇基因的偏好性抚吠。Gene usage preferences were quantified by calculating a normalized Jensen–Shannon divergence (JSD) between the observed gene segment frequencies for each repertoire and background gene frequencies calculated from large-scale repertoire profiling studies常潮,這里其實就是相對于正常的樣本,疾病樣本在TCR重排基因選擇的偏好性埃跷,當然蕊玷,這里用到的是JS散度邮利,大家可以參考文章KL散度、JS散度垃帅、Wasserstein距離延届,JSD 是 Kullback-Leibler 散度的對稱版本,further normalize the JSD values by dividing them by the mean Shannon entropy(香農(nóng)熵贸诚,又叫信息熵方庭,大家參考我之前的文章10X單細胞(10X空間轉(zhuǎn)錄組)基礎(chǔ)算法之KL散度) of the two distributions being compared, which helps to correct for variation in total gene number across segments。To set lower significance thresholds for the JSD heat maps(that is, the values below which the mapped colour is a uniform dark blue)酱固。
圖片.png
we compared the 2–4 different background repertoire datasets(這里就設(shè)置成我們的對照樣本) for each chain/organism to one another and took the largest observed JSD value across all comparisons.
Covariation(協(xié)變械念,協(xié)方差) between gene usage in different segments was quantified using the adjusted mutual information,a variant of the mutual information metric that corrects for the numbers and frequencies of the observed genes (mutual information between pairs of distributions tends to increase with the number of observation classes)。當然运悲,這個在單細胞數(shù)據(jù)中其實應(yīng)該用到的不多龄减。

CDR3 motif discovery.

used a simple, depth-first search procedure to identify over-represented sequence patterns in the CDR3 amino sequences of each repertoire.Motifs were represented as fixed-length patterns consisting of fully-specified amino acid positions, wild card positions, and amino acid group positions,The score of a motif was calculated using a chi-squared formalism:

motif\_score = (observed ? expected)2 / expected

where ‘observed’ represents the number of times the motif was observed in the repertoire sequences and ‘expected’ represents an estimate of the expected number of observations based on a background set of TCR sequences with V and J gene compositions that match the observed repertoire(這里的背景我們設(shè)置為單細胞的對照樣本)。(這一部分才是最為關(guān)鍵的地方)班眯。
Starting with two-position motifs scoring above a seed threshold, each motif was iteratively extended by adding new specified positions (that is, replacing an internal wild card or lengthening the motif at either end) that increased the motif score.The set of identified motifs were sorted by motif score and filtered for redundancy希停。Finally, motifs scoring above a threshold were extended to include near-neighbour TCRs using a stringent distance threshold; this allowed us to capture additional pattern instances that were not captured by our limited set of amino acid groupings. The final set of motifs for each repertoire were visualized using the TCR logo representation。(看來這才是TCR分析正確的打開方式)署隘。

TCRdiv 多樣性的衡量(也很重要)

為了衡量多樣性宠能,generalizes Simpson’s diversity index by accounting for TCR similarity as well as exact identity(關(guān)于辛普森多樣性指數(shù),大家可以百度百科一下)磁餐。辛普森多樣性可以被認為是衡量從混合總體中抽取兩個獨立樣本中相同物種或類別的項目的概率违崇,或者換句話說,如果樣本是返回 1 的兩個抽取樣本的函數(shù)的期望值 相同诊霹,否則為 0 羞延。We instead estimate the expected value of a Gaussian function(高斯函數(shù),確實需要很多的數(shù)學(xué)知識) of the inter-sample distance that returns 1 if the two samples are identical and exp(? (TCRdist(a,b) / s.d.)2) otherwise, where the s.d. was taken to be 18.45 for single-chain distances and twice that for paired analyses based on empirical assessments of receptor distance distributions for multiple epitopes畅哑。Taking the inverse of this estimate gives a diversity measure (TCRdiv) that can be interpreted as an effective population size for similarity-weighted sharing.(這部分有點難以理解肴楷,大家需要多一些耐心和學(xué)習(xí)了).

這部分的代碼在tcr-dist,作者已經(jīng)都封裝好了荠呐,我們用一下就可以赛蔫,感興趣大家可以多多學(xué)習(xí)一下。

到目前為止泥张,算是把基礎(chǔ)說完了呵恢,接下來的分析,就要更上一層樓了媚创。

生活很好渗钉,有你更好

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
禁止轉(zhuǎn)載,如需轉(zhuǎn)載請通過簡信或評論聯(lián)系作者。
  • 序言:七十年代末鳄橘,一起剝皮案震驚了整個濱河市声离,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌瘫怜,老刑警劉巖术徊,帶你破解...
    沈念sama閱讀 206,013評論 6 481
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異鲸湃,居然都是意外死亡赠涮,警方通過查閱死者的電腦和手機,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 88,205評論 2 382
  • 文/潘曉璐 我一進店門暗挑,熙熙樓的掌柜王于貴愁眉苦臉地迎上來笋除,“玉大人,你說我怎么就攤上這事炸裆±” “怎么了?”我有些...
    開封第一講書人閱讀 152,370評論 0 342
  • 文/不壞的土叔 我叫張陵晒衩,是天一觀的道長嗤瞎。 經(jīng)常有香客問我,道長听系,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 55,168評論 1 278
  • 正文 為了忘掉前任虹菲,我火速辦了婚禮靠胜,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘毕源。我一直安慰自己浪漠,他們只是感情好,可當我...
    茶點故事閱讀 64,153評論 5 371
  • 文/花漫 我一把揭開白布霎褐。 她就那樣靜靜地躺著址愿,像睡著了一般。 火紅的嫁衣襯著肌膚如雪冻璃。 梳的紋絲不亂的頭發(fā)上响谓,一...
    開封第一講書人閱讀 48,954評論 1 283
  • 那天,我揣著相機與錄音省艳,去河邊找鬼娘纷。 笑死,一個胖子當著我的面吹牛跋炕,可吹牛的內(nèi)容都是我干的赖晶。 我是一名探鬼主播,決...
    沈念sama閱讀 38,271評論 3 399
  • 文/蒼蘭香墨 我猛地睜開眼辐烂,長吁一口氣:“原來是場噩夢啊……” “哼遏插!你這毒婦竟也來了捂贿?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 36,916評論 0 259
  • 序言:老撾萬榮一對情侶失蹤胳嘲,失蹤者是張志新(化名)和其女友劉穎眷蜓,沒想到半個月后,有當?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體胎围,經(jīng)...
    沈念sama閱讀 43,382評論 1 300
  • 正文 獨居荒郊野嶺守林人離奇死亡吁系,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 35,877評論 2 323
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了白魂。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片汽纤。...
    茶點故事閱讀 37,989評論 1 333
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖福荸,靈堂內(nèi)的尸體忽然破棺而出蕴坪,到底是詐尸還是另有隱情,我是刑警寧澤敬锐,帶...
    沈念sama閱讀 33,624評論 4 322
  • 正文 年R本政府宣布背传,位于F島的核電站,受9級特大地震影響台夺,放射性物質(zhì)發(fā)生泄漏径玖。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點故事閱讀 39,209評論 3 307
  • 文/蒙蒙 一颤介、第九天 我趴在偏房一處隱蔽的房頂上張望梳星。 院中可真熱鬧,春花似錦滚朵、人聲如沸冤灾。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,199評論 0 19
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽韵吨。三九已至,卻和暖如春移宅,著一層夾襖步出監(jiān)牢的瞬間归粉,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 31,418評論 1 260
  • 我被黑心中介騙來泰國打工吞杭, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留盏浇,地道東北人。 一個月前我還...
    沈念sama閱讀 45,401評論 2 352
  • 正文 我出身青樓芽狗,卻偏偏與公主長得像绢掰,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 42,700評論 2 345

推薦閱讀更多精彩內(nèi)容